MATH 574, NOTES 7 PRACTICE PROBLEMS FOR TEST 2

(1) How many 4-permutations of the set $\{1,2,3,4,5,6\}$ contain the number 2 ?
(2) The number 12 written in base 2 is $(1100)_{2}$ which ends in 2 zeroes. In how many zeroes does the number 50 ! end when it is expressed in base 2 ?
(3) How many solutions are there to the equation

$$
x_{1}+x_{2}+x_{3}=10
$$

if each x_{j} is to be an integer from $\{0,1,2, \ldots, 10\}$?
(4) Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{r}$ be a complete list of distinct subsets of $\{1,2, \ldots, n\}$.
(a) Explain why $r=2^{n}$.
(b) If $\left|\mathcal{A}_{j}\right|$ denotes the number of elements in the subset \mathcal{A}_{j}, then what is the value of

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\cdots+\left|\mathcal{A}_{r}\right| ?
$$

(5) Calculate $\sum_{k=1}^{n} \frac{\binom{n}{k}}{2^{k}}$ in closed form. (Note that the sum begins with $k=1$ and not $k=0$.)
(6) Prove that $\sum_{k=0}^{n} \frac{\binom{n}{k}}{k+1}=\frac{2^{n+1}-1}{n+1}$.
(7) (a) Recall that

$$
1+x+x^{2}+\cdots=\frac{1}{1-x} \quad \text { if }|x|<1
$$

Give a closed form expression for the sum $1+2 x+3 x^{2}+4 x^{3}+\cdots$ that holds for $|x|<1$.
(b) Calculate $\sum_{k=0}^{\infty} \frac{k}{2^{k}}$.

