MATH 574, NOTES 6 PERMUTATIONS AND COMBINATIONS

- Definition: A k-permutation of a set of distinct objects is an ordered arrangement of k objects from the set.
- Definition: A k-combination of elements from a set is an unordered selection of k elements from the set.
- Notation: $\binom{n}{k}$ denotes the number of k-combinations that exist for an n element set.

Examples:

(1) What are the 2 -permutations of the set $\{1,2,3\}$?
(2) What are the 3 -combinations of the set $\{1,2,3,4\}$?
(3) What is number of k-permutations of an n element set?
(4) Show that $\binom{n}{k}=\frac{n!}{k!(n-k)!}$. Do this in two ways, by a counting argument and by a Calculus argument.
(5) Show that the coefficient of $x^{k} y^{n-k}$ in $(x+y)^{n}$ is $\binom{n}{k}$.
(6) Prove that $\binom{n}{k}=\binom{n}{n-k}$.
(7) Prove that $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$. Discuss Pascal's triangle.
(8) Show that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.
(9) Calculate $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}$ in closed form.
(10) Calculate $\sum_{k=0}^{n} k\binom{n}{k}$ in closed form.
(11) Calculate $\sum_{k=0}^{n} k^{2}\binom{n}{k}$ in closed form.
(12) Calculate $\sum_{k=0}^{n}\binom{n}{k}^{2}$ in closed form.
(13) A race involves 8 runners. First, second, and third place awards are made. How many possible outcomes are there for the awards?
(14) A committee of 5 people is to be formed from a group of 10 people. How many committees are possible?
(15) How many subsets of $\{a, b, c, d, e\}$ contain 3 elements.
(16) A path is taken from the origin $(0,0)$ in the plane to the point $(8,12)$. Each step in the path consists of moving one unit to the right or one unit up. How many such paths are possible?

