MATH 574, NOTES 3 PRACTICE PROBLEMS FOR TEST 1

(1) Prove that if the product of two positive numbers is <100, then at least one of the numbers is <10.
(2) We showed that $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ for all $n \geq 1$. Using this information, prove that

$$
(1+2+3+\cdots+n)^{2}=1^{3}+2^{3}+3^{3}+\cdots+n^{3} .
$$

(3) Prove that $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 2 \sqrt{n}$ for every integer $n \geq 1$.
(4) It is not true that the product of a rational number and an irrational number is always irrational. Prove that if α is rational and β is irrational, then $\alpha \beta$ is irrational unless α equals \square. Fill in the box with the correct number (there's just one) and write the proof.
(5) (a) Let $\alpha=e^{1 / e}$. Suppose $a_{1}=\alpha, a_{2}=\alpha^{\alpha}=\alpha^{a_{1}}, a_{3}=\alpha^{a_{2}}$, and so on. Prove that $a_{n} \leq e$ for all integers $n \geq 1$.
(b) Does the fact that $e=2.71828 \ldots$ have anything to do with your proof? In other words, is it true that if the number e is replaced everywhere in part (a) by any number $t>0$, then the argument still works?
(6) (a) Complete the proof of the lemma below. (The proof is not by contradiction or induction.)

Lemma. If a is an integer, then the remainder when a^{2} is divided by 4 is either 0 or 1 .
Proof. We want to show that there is an integer q such that $a^{2}=4 q+r$ with $r=0$ or $r=1$. The remainder when a is divided by 4 is one of $0,1,2$, or 3 . If the remainder is 0 , then $a=4 k$ for some integer k so that $a^{2}=16 k^{2}=4\left(4 k^{2}\right)+0$. Thus, in this case, one can take $q=4 k^{2}$ and $r=0$. If the remainder is 1 , then $a=4 k+1$ for some integer k so that $a^{2}=16 k^{2}+8 k+1=4\left(4 k^{2}+2 k\right)+1$. In this case, one can take $q=4 k^{2}+2 k$ and $r=1$. If the remainder is 2 , then

$$
a=\square
$$

for some integer k so that

$$
a^{2}=\square .
$$

In this case, one can take

$$
q=\square \quad \text { and } \quad r=\square .
$$

If the remainder is 3 , then

$$
a=\square
$$

for some integer k so that

$$
a^{2}=\square .
$$

In this case, one can take

$$
q=\square \quad \text { and } \quad r=\square .
$$

Thus, no matter what the remainder is when a is divided by 4 , we deduce that the remainder when a^{2} is divided by 4 is either 0 or 1 . This completes the proof.
(b) Prove that $N=3420392835475334299902849348202261018908732920143$ is not the sum of two squares. In other words, show that there are no integers a and b such that $N=a^{2}+b^{2}$. (Hint: Decide whether you want to do a proof by contradiction or a proof by induction. One of these works. Then determine the remainder when N is divided by 4. Next, use the lemma to obtain information about both a^{2} and b^{2} and proceed.)

