MATH 574, NOTES 3 PRACTICE PROBLEMS FOR TEST 1

(1) Prove that if the product of two positive numbers is < 100, then at least one of the numbers is < 10.

(2) We showed that $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for all $n \ge 1$. Using this information, prove that

$$(1+2+3+\cdots+n)^2 = 1^3+2^3+3^3+\cdots+n^3.$$

(3) Prove that
$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \le 2\sqrt{n}$$
 for every integer $n \ge 1$.

(4) It is not true that the product of a rational number and an irrational number is always irrational. Prove that if α is rational and β is irrational, then $\alpha\beta$ is irrational unless α equals . Fill in the box with the correct number (there's just one) and write the proof.

(5) (a) Let $\alpha = e^{1/e}$. Suppose $a_1 = \alpha$, $a_2 = \alpha^{\alpha} = \alpha^{a_1}$, $a_3 = \alpha^{a_2}$, and so on. Prove that $a_n \leq e$ for all integers $n \geq 1$.

(b) Does the fact that e = 2.71828... have anything to do with your proof? In other words, is it true that if the number e is replaced everywhere in part (a) by any number t > 0, then the argument still works?

(6) (a) Complete the proof of the lemma below. (The proof is not by contradiction or induction.)

Lemma. If a is an integer, then the remainder when a^2 is divided by 4 is either 0 or 1.

Proof. We want to show that there is an integer q such that $a^2 = 4q + r$ with r = 0 or r = 1. The remainder when a is divided by 4 is one of 0, 1, 2, or 3. If the remainder is 0, then a = 4k for some integer k so that $a^2 = 16k^2 = 4(4k^2) + 0$. Thus, in this case, one can take $q = 4k^2$ and r = 0. If the remainder is 1, then a = 4k + 1 for some integer k so that $a^2 = 16k^2 + 8k + 1 = 4(4k^2 + 2k) + 1$. In this case, one can take $q = 4k^2 + 2k$ and r = 1. If the remainder is 2, then

for some integer k so that

$$a^2 =$$

In this case, one can take

If the remainder is 3, then

for some integer k so that

In this case, one can take

q = and r =

Thus, no matter what the remainder is when a is divided by 4, we deduce that the remainder when a^2 is divided by 4 is either 0 or 1. This completes the proof.

(b) Prove that N = 3420392835475334299902849348202261018908732920143 is not the sum of two squares. In other words, show that there are no integers a and b such that $N = a^2 + b^2$. (Hint: Decide whether you want to do a proof by contradiction or a proof by induction. One of these works. Then determine the remainder when N is divided by 4. Next, use the lemma to obtain information about both a^2 and b^2 and proceed.)