MATH 574, NOTES 2
 PROOFS BY INDUCTION

Examples:

(1) The last digit of 6^{n} is a 6 .
(2) What is the sum of the first n odd numbers? (Do this with a picture as well as induction.)
(3) Given the derivative rule $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$, explain how to compute $\frac{d}{d x}\left(x^{n}\right)$.
(4) For k an integer ≥ 2, show that

$$
\cos \left(\pi / 2^{k}\right)=\frac{\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}}}{2}
$$

where $k-1$ twos appear under the radicals.
(5) Show that $\int_{0}^{\pi / 2} \cos ^{2 n} x d x=\frac{\pi}{2} \prod_{j=1}^{n}\left(\frac{2 j-1}{2 j}\right)$ for every integer $n \geq 1$.
(6) Suppose $a_{1}=\sqrt{2}, a_{2}=\sqrt{2}^{\sqrt{2}}=\sqrt{2}^{a_{1}}, a_{3}=\sqrt{2}^{a_{2}}$, and so on. Then the values a_{n} are bounded.
(7) A positive integer which is one less than a multiple of 4 is divisible by a prime which is one less than a multiple of 4 .
(8) All sheep are the same color.
(9) If f_{k} is the k th Fibonacci number (with $f_{0}=0, f_{1}=1, f_{2}=1$, and so on), then show that f_{n} and f_{n+1} have no common prime divisor for every $n \geq 1$.
(10) Prove that $f_{n-1} f_{n+1}=f_{n}^{2}+(-1)^{n}$ for every $n \geq 2$.

Homework:

(1) Prove that the last four digits of 625^{n} are given by 0625 for every integer $n \geq 2$.
(2) Prove that $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ for all $n \geq 1$. Try giving a proof with induction and a proof without induction.
(3) Show that $\int_{0}^{\pi / 2} \cos ^{2 n+1} x d x=\prod_{j=1}^{n}\left(\frac{2 j}{2 j+1}\right)$ for every integer $n \geq 1$.
(4) Prove that $f_{3 n}$ is even and both $f_{3 n-1}$ and $f_{3 n-2}$ are odd for every $n \geq 1$. (Here f_{k} denotes the k th Fibonacci number.)
(5) The triangle inequality asserts that for any two real numbers x and y, the inequality $|x+y| \leq|x|+|y|$ holds. Using this, show that if $x_{1}, x_{2}, \ldots, x_{n}$ are n real numbers, then

$$
\left|x_{1}+x_{2}+\cdots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| .
$$

(6) (a) Prove that for every integer $n \geq 1, \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geq \sqrt{n}$.
(b) Does $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ converge?
(7) Let D_{n} denote the number of ways to cover the squares of a $2 \times n$ board using plain dominos. Then it is easy to see that $D_{1}=1, D_{2}=2$, and $D_{3}=3$. Compute a few more values of D_{n}, guess an expression for the value of D_{n}, and use induction to prove you are right.
(8) (a) Let k be a positive integer. Using induction, prove that $\lim _{x \rightarrow \infty} \frac{(\log x)^{k}}{x}=0$.
(b) Using a proof by contradiction and part (a), establish that there are infinitly many primes. (Hint: assume that there are exactly k primes and count the number of positive integers up to x.)

