## Math 574: Test 1

Name $\qquad$

Points: Problems (1), (2), and (3) are worth 15 points each, and Problems (4), (5), and (6) are worth 18 points each. Your correctly spelled name or nickname above is worth 1 point.
(1) Suppose we want to use induction to prove

$$
8^{n}-7 n-1 \text { is divisible by } 49
$$

for all positive integers $n$.
(a) What would be the "induction hypothesis" in the proof? (Don't forget to use the word "some" or the word "all" below.)
(b) After stating the induction hypothesis in the proof, what should the goal be? In other words, what should we be trying to establish? Be precise.
(2) Prove that $\log _{2} 3$ is irrational.
(3) We showed in class that $\sqrt{2}$ is irrational. Using this information, complete the boxes below so as to complete a proof that $\sqrt{17+\sqrt{2}}$ is irrational.


Then there are integers $a$ and $b$, with $b>0$, such that $\square$
It follows that $17+\sqrt{2}=\square$. Hence,

(End up with something simplified here that justifies the next sentence.)
This is a contradiction since we showed in class that $\sqrt{2}$ is irrational. Therefore, $\sqrt{17+\sqrt{2}}$ is irrational.
(4) Let $a_{1}=\sqrt{20}$, and let

$$
a_{n+1}=\sqrt{20+a_{n}} \quad \text { for each positive integer } n
$$

For example, $a_{2}=\sqrt{20+\sqrt{20}}$ and $a_{3}=\sqrt{20+\sqrt{20+\sqrt{20}}}$. Complete the boxes below to give a proof that $a_{n} \leq 5$ for every positive integer $n$.

Proof. We prove

$$
\begin{equation*}
a_{n} \leq 5 \tag{*}
\end{equation*}
$$

 induction hypothesis. We suppose that

(Do NOT refer to (*). Also, use the word "all" or the word "some" above.)
Next, we show that $(*)$ holds when $n=\square$. In addition to $(* *)$, we make use of $\square$ to obtain
(This is related to the statement of the problem.)


Therefore, $(*)$ holds for $n=\square$. Thus, $(*)$ holds for all positive integers $n$ by
$\square$
(5) Let $k_{1}, k_{2}, k_{3}, \ldots, k_{98}, k_{99}$ be some ordering of the numbers $1,2,3, \ldots, 98,99$. (For example, maybe $k_{1}=2, k_{2}=1$, and $k_{j}=102-j$ for $3 \leq j \leq 99$, but maybe not. That's just an example.) Complete the boxes below and finish the proof to show that there must be some positive integer $i \leq 99$ for which $k_{i}-i$ is even.

Proof. Assume that there is no positive integer $i \leq 99$ for which $k_{i}-i$ is even. Then the numbers $k_{1}-1, k_{2}-2, k_{3}-3, \ldots, k_{98}-98$, and $k_{99}-99$ are all odd. Since the sum of an odd number of odd numbers is $\square$, we deduce that

$$
\left(k_{1}-1\right)+\left(k_{2}-2\right)+\left(k_{3}-3\right)+\cdots+\left(k_{98}-98\right)+\left(k_{99}-99\right) \text { is }
$$

Since $k_{1}, k_{2}, k_{3}, \ldots, k_{98}, k_{99}$ is some ordering of the numbers $1,2,3, \ldots, 98,99$, we obtain

$$
k_{1}+k_{2}+k_{3}+\cdots+k_{98}+k_{99}=\square .
$$

(You do not need an exact value here.)
Therefore,

$$
\begin{aligned}
\left(k_{1}-1\right) & +\left(k_{2}-2\right)+\left(k_{3}-3\right)+\cdots+\left(k_{98}-98\right)+\left(k_{99}-99\right) \\
& =\left(k_{1}+k_{2}+k_{3}+\cdots+k_{98}+k_{99}\right)-(\square) \\
& =\square . \square
\end{aligned}
$$

## Finish the Proof.

(6) Let

$$
a_{1}=1, \quad a_{2}=1+\frac{1}{1}, \quad a_{3}=1+\frac{1}{1+\frac{1}{1}}, \quad a_{4}=1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}, \ldots
$$

Thus, $a_{1}=1, a_{2}=2, a_{3}=3 / 2, a_{4}=5 / 3$, and in general $a_{n}=1+\left(1 / a_{n-1}\right)$ for each integer $n \geq 2$. Complete the proof below to show that

$$
\begin{equation*}
a_{n}=\frac{f_{n+1}}{f_{n}} \tag{*}
\end{equation*}
$$

holds for every positive integer $n$ where $f_{n}$ is the $n^{\text {th }}$ Fibonacci number. Recall that $f_{0}=0$, $f_{1}=1, f_{2}=1$, and $f_{n+1}=f_{n}+f_{n-1}$ for every integer $n \geq 1$. Fill in the boxes below appropriately. Do NOT refer to $(*)$ in any of the boxes. Note that a proof should consist of complete English sentences.

Proof. We prove (*) holds for every positive integer $n$ by $\square$ First, we verify that $(*)$ holds when $n=\square$. For this value of $n,(*)$ is true since
$\square$ Now, we make our induction hypothesis. We suppose that
$\square$
(Do NOT refer to (*). Also, what you write should make sense with the rest of the argument.)

Next, we consider the case $n=\square$. From $(* *)$, we deduce that


Since $\square$, we obtain that $a_{k+1}=f_{k+2} / f_{k+1}$ so that
$(*)$ holds for $n=k+1$. This proves $(*)$ holds for every positive integer $n$ by induction.

