SOLUTIONS TO PRACTICE PROBLEMS FOR TEST 1

(1) Let a and b be the two positive numbers so that ab < 100. Assume that both ¢ and b
are > 10. Then ab > 10 x 10 = 100. This contradicts that ab < 100. Hence, our assumption
is wrong and at least one of a or b is < 10.
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for every positive integer n. We use induction on n. Since 13 =1 = Q, (*) holds

when n = 1. Now, suppose that (x) holds for some n. We want to show that
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Hence, (%) holds. By induction, we deduce that (x) holds for every positive integer n.

(3) We prove
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for every integer n > 1 by induction on n. Since the sum on the left of (x) is simply 1/v/1 =1
when n = 1 and since the right of (%) is 2v/1 = 2 when n = 1, we see that () holds when
n = 1. Now, suppose that (x) is true for some integer n. We want to prove
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Thus, (**) holds, and we have by induction that (x) holds for every positive integer n.

(4) Let « be rational and (3 be irrational. We prove that o/ is irrational unless «a equals

. Assume «af is rational where we consider only the case that & # 0. Then a = a/b
(since « is rational) and af = ¢/d (since a3 is rational) for some integers a, b, ¢, and d with
c¢# 0 and d # 0. Since o # 0, we deduce a # 0. Thus,

af _c/d _be

= = ad

where bc and ad are integers and ad # 0. Hence, (3 is rational, contradicting that 3 is given
to be irrational. Therefore, o/ is irrational.

(5) (a) We prove a, < e for every integer n > 1 by induction on n. Since e > 1, we deduce
that a; = €'/¢ < e. Suppose now that a, < e for some integer n > 1. Since e > 1 and
1/e >0, e!/¢ > 1. Hence,

ant1 = (e9)" < (M%) =e.
Therefore, by induction, a, < e for every integer n > 1.

(b) The argument above made use of the fact that e > 1 and that e!/¢ > 1 (though you
might not have noticed where the latter was used). We did not need to use that e > 1 since
t1/t < tis true for all £ > 0. However, ¢'/¢ > 1 was needed. The same argument works fine if
t > 1 (then '/ > 1). The argument does not work if 0 < ¢ < 1. In fact, in this case, ay > t.

(6) (a) The proof can be completed as follows:

Proof: We want to show that there is an integer ¢ such that a? = 4¢ + r with r = 0 or
r = 1. The remainder when a is divided by 4 is one of 0, 1, 2, or 3. If the remainder is 0,
then a = 4k for some integer k so that a*> = 16k? = 4(4k?) + 0. Thus, in this case, one can
take ¢ = 4k? and r = 0. If the remainder is 1, then a = 4k + 1 for some integer k so that
a® = 16k? + 8k + 1 = 4(4k? + 2k) + 1. In this case, one can take ¢ = 4k? + 2k and r = 1. If

the remainder is 2, then
=| 4k +2

for some integer k so that

a’ =| 16k* + 16k +4 = 4(4k* + 4k +1)+0 |.




In this case, one can take

q=| 4> +4k+1| and r=[0]

If the remainder is 3, then
a=| 4k +3

for some integer k so that

a? =| 16k + 24k +9 = 4(4k> + 6k +2) + 1 |

In this case, one can take

q=| 4k* + 6k + 2 and T:.

Thus, no matter what the remainder is when a is divided by 4, we deduce that the remainder
when a? is divided by 4 is either 0 or 1. This completes the proof. B

(b) Assume that N = 3420392835475334299902849348202261018908732920143 is the sum
of two squares. Then N = a? + b? for some integers a and b. Observe that

N = 3420392835475334299902849348202261018908732920143
= 34203928354753342999028493482022610189087329201 x 100 + 43.

In other words, there is an integer m such that N = 100m + 43. Since 100m + 43 =
4(25m + 10) + 3, there is an integer k (namely, k = 25m + 10) such that N = 4k + 3. By
part (a), we know that the remainder when we divide a? or b? by 4 is in each case either 0
or 1. Hence, a® = 4¢; + 7, and b*> = 4q, + ry for some integers qi, ¢o, 71, and 7o with each of
ri and ry either 0 or 1. Since N = a? + b?, we deduce that

0:N—(a2+b2) = (4k 4+ 3) — (4q1+r1+4q2+r2) =4k —q —q) + (3—1r1 —ra).
Thus,
3—r —ro=4(—k+q + ).

In other words, 3 — r; — ry is a multiple of 4. Each of r; and 7y is either 0 or 1 so that
the only possible values for 3 — 7y —r, are 3—-0-0=3,3-0—-1=2,3—-1—-0 = 2,
and 3 —1 —1 = 1. Since none of these values (3, 2, and 1) is a multiple of 4, we have a
contradiction. Therefore, N is not the sum of two squares.

Comment: The same argument works for any integer /N which has a remainder of 3 when
divided by 4. There are other numbers, like 21, which do not have this property and are not
the sum of two squares.



