## Solutions to Practice Problems for Test 1

(1) Let $a$ and $b$ be the two positive numbers so that $a b<100$. Assume that both $a$ and $b$ are $\geq 10$. Then $a b \geq 10 \times 10=100$. This contradicts that $a b<100$. Hence, our assumption is wrong and at least one of $a$ or $b$ is $<10$.
(2) Since $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ for all $n \geq 1$, we want to prove

$$
\begin{equation*}
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4} \tag{*}
\end{equation*}
$$

for every positive integer $n$. We use induction on $n$. Since $1^{3}=1=\frac{1^{2} \times(1+1)^{2}}{4},(*)$ holds when $n=1$. Now, suppose that $(*)$ holds for some $n$. We want to show that

$$
\begin{equation*}
1^{3}+2^{3}+3^{3}+\cdots+n^{3}+(n+1)^{3}=\frac{(n+1)^{2}(n+2)^{2}}{4} \tag{**}
\end{equation*}
$$

From (*), we obtain

$$
\begin{aligned}
1^{3}+2^{3}+3^{3}+\cdots+n^{3}+(n+1)^{3} & =\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3}=(n+1)^{2}\left(\frac{n^{2}}{4}+n+1\right) \\
& =(n+1)^{2} \frac{n^{2}+4 n+4}{4}=\frac{(n+1)^{2}(n+2)^{2}}{4} .
\end{aligned}
$$

Hence, $(* *)$ holds. By induction, we deduce that $(*)$ holds for every positive integer $n$.
(3) We prove

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 2 \sqrt{n} \tag{*}
\end{equation*}
$$

for every integer $n \geq 1$ by induction on $n$. Since the sum on the left of $(*)$ is simply $1 / \sqrt{1}=1$ when $n=1$ and since the right of $(*)$ is $2 \sqrt{1}=2$ when $n=1$, we see that $(*)$ holds when $n=1$. Now, suppose that $(*)$ is true for some integer $n$. We want to prove

$$
\begin{equation*}
\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} \leq 2 \sqrt{n+1} \tag{**}
\end{equation*}
$$

From (*), we obtain

$$
\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}}=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}+\frac{1}{\sqrt{n+1}} \leq 2 \sqrt{n}+\frac{1}{\sqrt{n+1}}=\frac{2 \sqrt{n(n+1)}+1}{\sqrt{n+1}}
$$

Since $\left(n+\frac{1}{2}\right)^{2}=n^{2}+n+\frac{1}{4}$, we see that

$$
\sqrt{n(n+1)}=\sqrt{n^{2}+n}<\sqrt{\left(n+\frac{1}{2}\right)^{2}}=n+\frac{1}{2}
$$

Therefore,

$$
\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} \leq \frac{2 \sqrt{n(n+1)}+1}{\sqrt{n+1}}<\frac{2\left(n+\frac{1}{2}\right)+1}{\sqrt{n+1}}=\frac{2 n+2}{\sqrt{n+1}}=\frac{2(n+1)}{\sqrt{n+1}}=2 \sqrt{n+1} .
$$

Thus, $(* *)$ holds, and we have by induction that $(*)$ holds for every positive integer $n$.
(4) Let $\alpha$ be rational and $\beta$ be irrational. We prove that $\alpha \beta$ is irrational unless $\alpha$ equals 0 . Assume $\alpha \beta$ is rational where we consider only the case that $\alpha \neq 0$. Then $\alpha=a / b$ (since $\alpha$ is rational) and $\alpha \beta=c / d$ (since $\alpha \beta$ is rational) for some integers $a, b, c$, and $d$ with $c \neq 0$ and $d \neq 0$. Since $\alpha \neq 0$, we deduce $a \neq 0$. Thus,

$$
\beta=\frac{\alpha \beta}{\alpha}=\frac{c / d}{a / b}=\frac{b c}{a d}
$$

where $b c$ and $a d$ are integers and $a d \neq 0$. Hence, $\beta$ is rational, contradicting that $\beta$ is given to be irrational. Therefore, $\alpha \beta$ is irrational.
(5) (a) We prove $a_{n} \leq e$ for every integer $n \geq 1$ by induction on $n$. Since $e>1$, we deduce that $a_{1}=e^{1 / e} \leq e$. Suppose now that $a_{n} \leq e$ for some integer $n \geq 1$. Since $e>1$ and $1 / e>0, e^{1 / e}>1$. Hence,

$$
a_{n+1}=\left(e^{1 / e}\right)^{a_{n}} \leq\left(e^{1 / e}\right)^{e}=e .
$$

Therefore, by induction, $a_{n} \leq e$ for every integer $n \geq 1$.
(b) The argument above made use of the fact that $e>1$ and that $e^{1 / e}>1$ (though you might not have noticed where the latter was used). We did not need to use that $e>1$ since $t^{1 / t} \leq t$ is true for all $t>0$. However, $e^{1 / e}>1$ was needed. The same argument works fine if $t>1\left(\right.$ then $\left.t^{1 / t}>1\right)$. The argument does not work if $0<t<1$. In fact, in this case, $a_{2}>t$.
(6) (a) The proof can be completed as follows:

Proof: We want to show that there is an integer $q$ such that $a^{2}=4 q+r$ with $r=0$ or $r=1$. The remainder when $a$ is divided by 4 is one of $0,1,2$, or 3 . If the remainder is 0 , then $a=4 k$ for some integer $k$ so that $a^{2}=16 k^{2}=4\left(4 k^{2}\right)+0$. Thus, in this case, one can take $q=4 k^{2}$ and $r=0$. If the remainder is 1 , then $a=4 k+1$ for some integer $k$ so that $a^{2}=16 k^{2}+8 k+1=4\left(4 k^{2}+2 k\right)+1$. In this case, one can take $q=4 k^{2}+2 k$ and $r=1$. If the remainder is 2 , then

$$
a=4 k+2
$$

for some integer $k$ so that

$$
a^{2}=16 k^{2}+16 k+4=4\left(4 k^{2}+4 k+1\right)+0 \text {. }
$$

In this case, one can take

$$
q=4 k^{2}+4 k+1 \quad \text { and } \quad r=0 .
$$

If the remainder is 3 , then

$$
a=4 k+3
$$

for some integer $k$ so that

$$
a^{2}=16 k^{2}+24 k+9=4\left(4 k^{2}+6 k+2\right)+1 .
$$

In this case, one can take

$$
q=4 k^{2}+6 k+2 \quad \text { and } \quad r=1 .
$$

Thus, no matter what the remainder is when $a$ is divided by 4 , we deduce that the remainder when $a^{2}$ is divided by 4 is either 0 or 1 . This completes the proof.
(b) Assume that $N=3420392835475334299902849348202261018908732920143$ is the sum of two squares. Then $N=a^{2}+b^{2}$ for some integers $a$ and $b$. Observe that

$$
\begin{aligned}
N & =3420392835475334299902849348202261018908732920143 \\
& =34203928354753342999028493482022610189087329201 \times 100+43
\end{aligned}
$$

In other words, there is an integer $m$ such that $N=100 m+43$. Since $100 m+43=$ $4(25 m+10)+3$, there is an integer $k$ (namely, $k=25 m+10)$ such that $N=4 k+3$. By part (a), we know that the remainder when we divide $a^{2}$ or $b^{2}$ by 4 is in each case either 0 or 1 . Hence, $a^{2}=4 q_{1}+r_{1}$ and $b^{2}=4 q_{2}+r_{2}$ for some integers $q_{1}, q_{2}, r_{1}$, and $r_{2}$ with each of $r_{1}$ and $r_{2}$ either 0 or 1 . Since $N=a^{2}+b^{2}$, we deduce that

$$
0=N-\left(a^{2}+b^{2}\right)=(4 k+3)-\left(4 q_{1}+r_{1}+4 q_{2}+r_{2}\right)=4\left(k-q_{1}-q_{2}\right)+\left(3-r_{1}-r_{2}\right) .
$$

Thus,

$$
3-r_{1}-r_{2}=4\left(-k+q_{1}+q_{2}\right)
$$

In other words, $3-r_{1}-r_{2}$ is a multiple of 4 . Each of $r_{1}$ and $r_{2}$ is either 0 or 1 so that the only possible values for $3-r_{1}-r_{2}$ are $3-0-0=3,3-0-1=2,3-1-0=2$, and $3-1-1=1$. Since none of these values ( 3,2 , and 1 ) is a multiple of 4 , we have a contradiction. Therefore, $N$ is not the sum of two squares.

Comment: The same argument works for any integer $N$ which has a remainder of 3 when divided by 4 . There are other numbers, like 21, which do not have this property and are not the sum of two squares.

