\qquad
Quiz \#2
Use English Sentences Throughout Your Proof!!
Points: The quiz is one problem worth 10 points.
(1) Using induction, prove that $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geq \sqrt{n+1}$ for every integer $n \geq 3$. Be sure to do a proof by induction. Note also that this quiz problem differs from the related homework problem in two ways: this quiz problem is for $n \geq 2$ rather than $n \geq 1$ and you are being asked to prove the sum is $\geq \sqrt{n+1}$ rather than $\geq \sqrt{n}$.

Solution: We prove

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geq \sqrt{n+1} \tag{*}
\end{equation*}
$$

for every integer $n \geq 3$ by induction on n. Since

$$
\sum_{k=1}^{3} \frac{1}{\sqrt{k}}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}} \geq 1+\frac{1}{2}+\frac{1}{2}=2=\sqrt{3+1}
$$

we see that $(*)$ holds when $n=3$. Suppose $(*)$ holds for some n. We want to prove that

$$
\begin{equation*}
\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} \geq \sqrt{n+2} \tag{**}
\end{equation*}
$$

By the induction hypothesis,

$$
\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}}=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}+\frac{1}{\sqrt{n+1}} \geq \sqrt{n+1}+\frac{1}{\sqrt{n+1}}=\frac{\sqrt{n+1} \sqrt{n+1}+1}{\sqrt{n+1}}=\frac{n+2}{\sqrt{n+1}}
$$

Since $\sqrt{n+2}>\sqrt{n+1}$, we obtain $\frac{n+2}{\sqrt{n+1}}>\frac{n+2}{\sqrt{n+2}}$. Hence,

$$
\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} \geq \frac{n+2}{\sqrt{n+1}}>\frac{n+2}{\sqrt{n+2}}=\sqrt{n+2}
$$

Therefore, $(* *)$ holds. By induction, we deduce that $(*)$ holds for every positive integer n.

