Answers to Spring, 1999, Test 2

1. $\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}$
2. $10 \cdot 9 \cdot 8=720$
3. $500+333-166=667$
4. $\binom{6}{3}\binom{6}{2}=20 \cdot 15=300$
5. $10!-9!=9 \cdot 9$!
6. (a) $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$ where n is a positive integer
(b) $2^{n}($ take $x=y=1)$
(c) 0 for n a positive integer (take $x=-1$ and $y=1$)
(d) Take $n=100$ in parts (b) and (c) and add the results to get $2 \sum_{j=0}^{50}\binom{100}{2 j}=2^{100}$.

Therefore, the answer is 2^{99}, that is $a=1, b=2$ and $c=99$.
7. The binomial theorem implies

$$
\begin{equation*}
(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} \tag{1}
\end{equation*}
$$

Integrating the left side of (1) from $x=0$ to $x=1$, we get

$$
\int_{0}^{1}(x+1)^{n} d x=\left.\frac{(x+1)^{n+1}}{n+1}\right|_{0} ^{1}=\frac{2^{n+1}-1}{n+1}
$$

Integrating the right side of (1) from $x=0$ to $x=1$, we obtain

$$
\int_{0}^{1} \sum_{k=0}^{n}\binom{n}{k} x^{k} d x=\left.\sum_{k=0}^{n}\binom{n}{k} \frac{x^{k+1}}{k+1}\right|_{0} ^{1}=\sum_{k=0}^{n}\binom{n}{k} \frac{1}{k+1} .
$$

Hence,

$$
\sum_{k=0}^{n} \frac{\binom{n}{k}}{k+1}=\frac{2^{n+1}-1}{n+1}
$$

