\qquad
Test \#2
Show All Work
Points: (1) 6 pts each part, (2) - (5) 13 pts each, (6) 18 pts
(1) (a) Calculate $\frac{\partial f}{\partial y}$ where $f(x, y)=x^{2} \sin (x y)$.
(b) Calculate $\nabla f(2,1)$ where $f(x, y)=x^{2}+y^{3}$.
(c) Calculate $f_{x x x x y y}$ if $f(x, y)=x^{3} y^{2} \sqrt{y} \sin (y) e^{y} \ln y$.
(d) Integrate $\int_{0}^{1} \int_{0}^{3} x y^{2} d x d y$
(e) Find the directional derivative of $f(x, y)=x^{2} y+x+2$ at the point $P=(1,1)$ in the direction of $\mathbf{v}=-i+j$.
(2) Find the equation of the tangent plane to the surface $z^{2}=x^{3}+y^{2}$ at the point $(2,1,-3)$.
(3) Calculate $\frac{\partial z}{\partial t}$ given that $z=y^{2} \sqrt{y} \sin (x+y), x=3 u+2 v, y=v^{3}-12 v^{2}+5 v+16$, $u=r+2 s, v=r^{2}+3 r+5, r=w^{3}+\cos (w)$, and $s=3 t w$. Use any method you want. You do not need to write your answer in terms of w and t (i.e., you may have other variables in your answer). Do NOT simplify.
(4) Find every point $P=(a, b, c)$ on the surface $z=(x+y)^{3} x+x^{2}-x$ such that the tangent plane to the surface at P is horizontal (i.e., the tangent plane is parallel to the $x y$-plane).
(5) Using the second derivative test for functions of two variables, find all points (a, b, c) where the graph of $f(x, y)=x^{2}+2 x y+2 y^{2}+2 x+1$ has a local maximum or a local minimum. For each such point, indicate which (a local maximum or a local minimum) occurs.
(6) Find the maximum and minimum values for the function $f(x, y)=x y^{2}+3 y^{2}+5 x-5$ in the disk $x^{2}+y^{2} \leq 4$. Be sure you justify your answers.

Maximum: \square
Minimum: \square

