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Find the critical points of the function

f(x, y) = 3x + xy2

where(x, y) is restricted to points in the set

S = {(x, y) : x2 + y2 ≤ 9}.

Also, determine the maximum and the minimum values of
f(x, y) in S as well as all points(x, y) where these ex-
treme values occur.
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√
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√
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Let
f(x, y) = x4 + 4xy + xy2.

The functionf(x, y) has 3 critical points. Calculate the
three critical points and indicate (with justification) whether
each determines a local maximum value off(x, y), a local
minimum value off(x, y), or a saddle point off(x, y).
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Quick Overview:

• Computing a directional derivative requires aunit vector.

• The largest value of the directional derivative at a point
is |∇f | at that point.

• The direction giving this largest value is in the direction
of ∇f .

• The gradient at a point on a surfaceF = 0 is perpendic-
ular to the tangent plane there.

• When taking limits, every direction counts but some di-
rections might count more than others.

• Think polar coordinates with limits (as(x, y) → (0, 0)).
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Quick Overview:

• If D > 0 andfxx < 0, then we’ve located a local
maximum.

• If D < 0, then we’ve located a saddle point.

• I promise to look at the first two sections of Chapter 16
(a little).

• I will not study Lagrange multipliers.


