Test 1 Review

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(a) Calculate the vector $\overrightarrow{Q P}$.

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(a) Calculate the vector $\overrightarrow{Q P}$.

$$
\langle 2,
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(a) Calculate the vector $\overrightarrow{Q P}$.

$$
\langle 2,3,
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(a) Calculate the vector $\overrightarrow{Q P}$.

$$
\langle 2,3,1\rangle
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(a) Calculate the vector $\overrightarrow{Q P}$.

$$
\langle 2,3,1\rangle
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(b) Calculate the magnitude of vector $\overrightarrow{Q P}$.

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(b) Calculate the magnitude of vector $\overrightarrow{Q P}$.

$$
\overrightarrow{Q P}=\langle 2,3,1\rangle
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(b) Calculate the magnitude of vector $\overrightarrow{Q P}$.

$$
|\overrightarrow{Q P}|=|\langle 2,3,1\rangle|
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(b) Calculate the magnitude of vector $\overrightarrow{Q P}$.

$$
\begin{aligned}
|\overrightarrow{Q P}| & =|\langle 2,3,1\rangle| \\
& =\sqrt{2^{2}+3^{2}+1^{2}}
\end{aligned}
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(b) Calculate the magnitude of vector $\overrightarrow{Q P}$.

$$
\begin{aligned}
|\overrightarrow{Q P}| & =|\langle 2,3,1\rangle| \\
& =\sqrt{2^{2}+3^{2}+1^{2}} \\
& =\sqrt{14}
\end{aligned}
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(b) Calculate the magnitude of vector $\overrightarrow{Q P}$.

$$
\begin{aligned}
|\overrightarrow{Q P}| & =|\langle 2,3,1\rangle| \\
& =\sqrt{2^{2}+3^{2}+1^{2}} \\
& =\sqrt{14}
\end{aligned}
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(c) Calculate $\angle \boldsymbol{P Q R}$ and simplify your answer (it should not involve any inverse trigonometric functions).

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(c) Calculate $\angle \boldsymbol{P Q R}$ and simplify your answer (it should not involve any inverse trigonometric functions).

Let $\boldsymbol{\theta}=\angle \boldsymbol{P Q R}$.

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

$$
\text { (c) } \theta=\angle P Q R=\text { ? }
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(c) $\theta=\angle P Q R=$?

$$
\overrightarrow{Q P}=\langle 2,3,1\rangle
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(c) $\theta=\angle P Q R=$?

$$
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(c) $\theta=\angle P Q R=$?

$$
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(c) $\theta=\angle P Q R=$?

$$
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle
$$

$\cos \theta=$

Problem 1 (1999):
$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(c) $\boldsymbol{\theta}=\angle P Q R=?$

$$
\begin{aligned}
\overrightarrow{Q P} & =\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
\cos \theta & =\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=
\end{aligned}
$$

Problem 1 (1999):
$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(c) $\theta=\angle P Q R=?$

$$
\begin{aligned}
\overrightarrow{Q P} & =\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
\cos \theta & =\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=
\end{aligned}
$$

Problem 1 (1999):
$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(c) $\theta=\angle P Q R=?$

$$
\begin{aligned}
\overrightarrow{Q P} & =\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
\cos \theta & =\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=
\end{aligned}
$$

Problem 1 (1999):
$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(c) $\theta=\angle P Q R=?$

$$
\begin{aligned}
\overrightarrow{Q P} & =\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
\cos \theta & =\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=\frac{6+3-2}{}
\end{aligned}
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(c) $\boldsymbol{\theta}=\angle P Q R=?$

$$
\begin{aligned}
\overrightarrow{Q P} & =\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
\cos \theta & =\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=\frac{6+3-2}{\sqrt{14}}
\end{aligned}
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(c) $\boldsymbol{\theta}=\angle P Q R=?$

$$
\begin{aligned}
\overrightarrow{Q P} & =\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
\cos \theta & =\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=\frac{6+3-2}{\sqrt{14} \sqrt{14}}
\end{aligned}
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(c) $\boldsymbol{\theta}=\angle P Q R=?$

$$
\begin{aligned}
\overrightarrow{Q P} & =\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
\cos \theta & =\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=\frac{6+3-2}{\sqrt{14} \sqrt{14}}=\frac{1}{2}
\end{aligned}
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(c) $\theta=\angle P Q R=$?

$$
\begin{gathered}
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
\cos \theta=\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=\frac{6+3-2}{\sqrt{14} \sqrt{14}}=\frac{1}{2} \\
\theta=\pi / 3
\end{gathered}
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(c) $\boldsymbol{\theta}=\angle P Q R=?$

$$
\begin{gathered}
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
\cos \theta=\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=\frac{6+3-2}{\sqrt{14} \sqrt{14}}=\frac{1}{2} \\
\theta=\pi / 3
\end{gathered}
$$

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(d) Calculate the area of $\triangle P Q R$.

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(d) Calculate the area of $\triangle P Q R$.

$$
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(d) Calculate the area of $\triangle P Q R$.

$$
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle
$$

$$
|\overrightarrow{Q P} \times \overrightarrow{Q R}|
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(d) Calculate the area of $\triangle P Q R$.

$$
\begin{gathered}
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
|\overrightarrow{Q P} \times \overrightarrow{Q R}|=\left|\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & 1 \\
3 & 1 & -2
\end{array}\right)\right|
\end{gathered}
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(d) Calculate the area of $\Delta P Q R$.

$$
\begin{array}{r}
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
|\overrightarrow{Q P} \times \overrightarrow{Q R}|=\left|\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & 1 \\
3 & 1 & -2
\end{array}\right)\right|=\mid\langle-7,
\end{array}
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(d) Calculate the area of $\Delta P Q R$.

$$
\begin{gathered}
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
|\overrightarrow{Q P} \times \overrightarrow{Q R}|=\left|\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & 1 \\
3 & 1 & -2
\end{array}\right)\right|=\mid\langle-7,7,
\end{gathered}
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(d) Calculate the area of $\triangle P Q R$.

$$
\begin{gathered}
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
|\overrightarrow{Q P} \times \overrightarrow{Q R}|=\left|\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & 1 \\
3 & 1 & -2
\end{array}\right)\right|=|\langle-7,7,-7\rangle|
\end{gathered}
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(d) Calculate the area of $\triangle P Q R$.

$$
\begin{gathered}
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
|\overrightarrow{Q P} \times \overrightarrow{Q R}|=\left|\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & 1 \\
3 & 1 & -2
\end{array}\right)\right|=|\langle-7,7,-7\rangle|
\end{gathered}
$$

Area $=$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(d) Calculate the area of $\triangle P Q R$.

$$
\left.\begin{array}{c}
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
|\overrightarrow{Q P} \times \overrightarrow{Q R}|=\left\lvert\, \operatorname{det}\left(\begin{array}{cc}
\vec{i} & \vec{j}
\end{array} \vec{k}\right.\right. \\
2 \\
3
\end{array} 1-14\right)|=|\langle-7,7,-7\rangle|
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(d) Calculate the area of $\triangle P Q R$.

$$
\begin{gathered}
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
|\overrightarrow{Q P} \times \overrightarrow{Q R}|=\left|\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & 1 \\
3 & 1 & -2
\end{array}\right)\right|=|\langle-7,7,-7\rangle| \\
\text { Area }=7 \sqrt{3} / 2
\end{gathered}
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(d) Calculate the area of $\Delta P Q R$.

$$
\begin{gathered}
\overrightarrow{Q P}=\langle 2,3,1\rangle \quad \overrightarrow{Q R}=\langle 3,1,-2\rangle \\
|\overrightarrow{Q P} \times \overrightarrow{Q R}|=\left|\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & 1 \\
3 & 1 & -2
\end{array}\right)\right|=|\langle-7,7,-7\rangle| \\
\text { Area }=7 \sqrt{3} / 2
\end{gathered}
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(e) Determine a point S such that P, Q, R, and S are the four vertices of a parallelogram.

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(e) Determine a point S such that $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{R}$, and \boldsymbol{S} are the four vertices of a parallelogram.

$$
\overrightarrow{R S}=\overrightarrow{Q P}
$$

Problem 1 (1999):

$P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)$
(e) Determine a point S such that P, Q, R, and S are the four vertices of a parallelogram.

$$
\begin{gathered}
\overrightarrow{R S}=\overrightarrow{Q P} \\
\overrightarrow{R S}=\langle 2,3,1\rangle
\end{gathered}
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(e) Determine a point S such that $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{R}$, and \boldsymbol{S} are the four vertices of a parallelogram.

$$
\begin{gathered}
\overrightarrow{R S}=\overrightarrow{Q P} \\
\overrightarrow{R S}=\langle 2,3,1\rangle
\end{gathered}
$$

Problem 1 (1999):

$$
P=(6,4,0), \quad Q=(4,1,-1), \quad R=(7,2,-3)
$$

(e) Determine a point S such that $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{R}$, and \boldsymbol{S} are the four vertices of a parallelogram.

$$
\begin{gathered}
\overrightarrow{R S}=\overrightarrow{Q P} \\
\overrightarrow{R S}=\langle 2,3,1\rangle \\
S=(9,5,-2)
\end{gathered}
$$

Problem 3 (1999):

Problem 3 (1999):

Let \mathcal{P} be the plane $\boldsymbol{x}+\boldsymbol{y}-\boldsymbol{z}=2$. Find the equation of a plane perpendicular to \mathcal{P} and passing through the points $(1,4,-3)$ and $(1,5,-2)$.

Problem 3 (1999):

Let \mathcal{P} be the plane $\boldsymbol{x}+\boldsymbol{y}-\boldsymbol{z}=2$. Find the equation of a plane perpendicular to \mathcal{P} and passing through the points $(1,4,-3)$ and $(1,5,-2)$.

$$
P=(1,4,-3) \quad Q=(1,5,-2)
$$

Problem 3 (1999):

Let \mathcal{P} be the plane $\boldsymbol{x}+\boldsymbol{y}-\boldsymbol{z}=2$. Find the equation of a plane perpendicular to \mathcal{P} and passing through the points $(1,4,-3)$ and $(1,5,-2)$.

$$
P=(1,4,-3) \quad Q=(1,5,-2) \quad \overrightarrow{P Q}=\langle 0,1,1\rangle
$$

$$
x
$$

$$
x
$$

$$
\chi
$$

Problem 3 (1999):

Let \mathcal{P} be the plane $\boldsymbol{x}+\boldsymbol{y}-\boldsymbol{z}=2$. Find the equation of a plane perpendicular to \mathcal{P} and passing through the points $(1,4,-3)$ and $(1,5,-2)$.

$$
P=(1,4,-3) \quad Q=(1,5,-2) \quad \overrightarrow{P Q}=\langle 0,1,1\rangle
$$

$\langle 1,1,-1\rangle$

Problem 3 (1999):

Let \mathcal{P} be the plane $\boldsymbol{x}+\boldsymbol{y}-\boldsymbol{z}=2$. Find the equation of a plane perpendicular to \mathcal{P} and passing through the points $(1,4,-3)$ and $(1,5,-2)$.

$$
P=(1,4,-3) \quad Q=(1,5,-2) \quad \overrightarrow{P Q}=\langle 0,1,1\rangle
$$

$$
\langle 1,1,-1\rangle \times \overrightarrow{P Q}
$$

Problem 3 (1999):

Let \mathcal{P} be the plane $x+y-z=2$. Find the equation of a plane perpendicular to \mathcal{P} and passing through the points $(1,4,-3)$ and $(1,5,-2)$.

$$
P=(1,4,-3) \quad Q=(1,5,-2) \quad \overrightarrow{P Q}=\langle 0,1,1\rangle
$$

$$
\langle 1,1,-1\rangle \times \overrightarrow{P Q}=\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right)
$$

Problem 3 (1999):

Let \mathcal{P} be the plane $\boldsymbol{x}+\boldsymbol{y}-\boldsymbol{z}=2$. Find the equation of a plane perpendicular to \mathcal{P} and passing through the points $(1,4,-3)$ and $(1,5,-2)$.
$P=(1,4,-3) \quad Q=(1,5,-2) \quad \overrightarrow{P Q}=\langle 0,1,1\rangle$

$$
\langle 1,1,-1\rangle \times \overrightarrow{P Q}=\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right)=\langle 2,-1,1\rangle
$$

Problem 3 (1999):

Let \mathcal{P} be the plane $\boldsymbol{x}+\boldsymbol{y}-\boldsymbol{z}=2$. Find the equation of a plane perpendicular to \mathcal{P} and passing through the points $(1,4,-3)$ and $(1,5,-2)$.

$$
\begin{gathered}
P=(1,4,-3) \quad Q=(1,5,-2) \quad \overrightarrow{P Q}=\langle 0,1,1\rangle \\
\langle 1,1,-1\rangle \times \overrightarrow{P Q}=\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right)=\langle 2,-1,1\rangle
\end{gathered}
$$

$$
2 x-y+z=-5
$$

Problem 3 (1999):

Let \mathcal{P} be the plane $x+y-z=2$. Find the equation of a plane perpendicular to \mathcal{P} and passing through the points $(1,4,-3)$ and $(1,5,-2)$.

$$
\begin{gathered}
P=(1,4,-3) \quad Q=(1,5,-2) \quad \overrightarrow{P Q}=\langle 0,1,1\rangle \\
\langle 1,1,-1\rangle \times \overrightarrow{P Q}=\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right)=\langle 2,-1,1\rangle
\end{gathered}
$$

$$
2 x-y+z=-5
$$

Problem 4 (1999):

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}: \begin{cases}x & =2+t \\ y & =0 \\ z & =-1+t\end{cases}
$$

$$
\ell_{2}: \begin{cases}x & =3 \\ y & =2 t \\ z & =1+t\end{cases}
$$

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}: \begin{cases}x & =2+t \\ y & =0 \\ z & =-1+t\end{cases}
$$

$$
\ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.
$$

They are not parallel because

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=1+2 t \\
z=1+t
\end{array}\right.\right.
$$

They are not parallel because one cannot have

$$
\langle 1,0,1\rangle=c\langle 0,2,1\rangle
$$

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

They are not parallel because one cannot have

$$
\langle 1,0,1\rangle=c\langle 0,2,1\rangle
$$

(the first component on the left is 1 and on the right is 0).

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}: \begin{cases}x & =2+t \\ y & =0 \\ z & =-1+t\end{cases}
$$

$$
\ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.
$$

They are not parallel.

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}: \begin{cases}x & =2+t \\ y & =0 \\ z & =-1+t\end{cases}
$$

$$
\ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.
$$

They do not intersect since

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=1+2 t \\
z=1+t
\end{array}\right.\right.
$$

They do not intersect since otherwise the intersection point, say \boldsymbol{P}, would have \boldsymbol{x}-coordinate

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=1+2 t \\
z=1+t
\end{array}\right.\right.
$$

They do not intersect since otherwise the intersection point, say \boldsymbol{P}, would have \boldsymbol{x}-coordinate $\mathbf{3}$

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

They do not intersect since otherwise the intersection point, say \boldsymbol{P}, would have \boldsymbol{x}-coordinate $\mathbf{3}$ and \boldsymbol{y}-coordinate

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

They do not intersect since otherwise the intersection point, say \boldsymbol{P}, would have \boldsymbol{x}-coordinate $\mathbf{3}$ and \boldsymbol{y}-coordinate $\mathbf{0}$.

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

They do not intersect since otherwise the intersection point, say \boldsymbol{P}, would have \boldsymbol{x}-coordinate 3 and \boldsymbol{y}-coordinate 0 . So P would be $\left(3,0, z_{0}\right)$ for some z_{0}.

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

They do not intersect since otherwise the intersection point, say \boldsymbol{P}, would have \boldsymbol{x}-coordinate 3 and \boldsymbol{y}-coordinate 0 . So P would be $\left(3,0, z_{0}\right)$ for some z_{0}. In the equations for ℓ_{1}, we would have $t=1$ so that

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

They do not intersect since otherwise the intersection point, say \boldsymbol{P}, would have \boldsymbol{x}-coordinate 3 and \boldsymbol{y}-coordinate 0 . So P would be $\left(3,0, z_{0}\right)$ for some z_{0}. In the equations for ℓ_{1}, we would have $t=1$ so that $z_{0}=0$.

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

They do not intersect since otherwise the intersection point, say \boldsymbol{P}, would have \boldsymbol{x}-coordinate 3 and \boldsymbol{y}-coordinate 0 . So P would be $\left(3,0, z_{0}\right)$ for some z_{0}. In the equations for ℓ_{1}, we would have $t=1$ so that $z_{0}=0$. In the equations for ℓ_{2}, we would have $t=0$ so that

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

They do not intersect since otherwise the intersection point, say \boldsymbol{P}, would have \boldsymbol{x}-coordinate 3 and \boldsymbol{y}-coordinate 0 . So P would be $\left(3,0, z_{0}\right)$ for some z_{0}. In the equations for ℓ_{1}, we would have $t=1$ so that $z_{0}=0$. In the equations for ℓ_{2}, we would have $t=0$ so that $z_{0}=1$.

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

They do not intersect since otherwise the intersection point, say \boldsymbol{P}, would have \boldsymbol{x}-coordinate 3 and \boldsymbol{y}-coordinate 0 . So \boldsymbol{P} would be $\left(3,0, z_{0}\right)$ for some z_{0}. In the equations for ℓ_{1}, we would have $t=1$ so that $z_{0}=0$. In the equations for ℓ_{2}, we would have $t=0$ so that $z_{0}=1$. But clearly z_{0} cannot be both 0 and 1 .

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}: \begin{cases}x & =2+t \\ y & =0 \\ z & =-1+t\end{cases}
$$

$$
\ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.
$$

They are not parallel.
They do not intersect.

Problem 4 (1999):

(a) Why are these lines skew?

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array}\right.
$$

$$
\ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.
$$

They are not parallel.
They do not intersect.
Therefore, the lines are skew.

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$$
\ell_{1}: \begin{cases}x & =2+t \\ y & =0 \\ z & =-1+t\end{cases}
$$

$$
\ell_{2}: \begin{cases}x & =3 \\ y & =2 t \\ z & =1+t\end{cases}
$$

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

Perpendicular to Both Lines:

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

Perpendicular to Both Lines:
$\langle 1,0,1\rangle \times\langle 0,2,1\rangle$

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

Perpendicular to Both Lines:
$\langle 1,0,1\rangle \times\langle 0,2,1\rangle=\operatorname{det}\left(\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 1 \\ 0 & 2 & 1\end{array}\right)$

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

Perpendicular to Both Lines:
$\langle 1,0,1\rangle \times\langle 0,2,1\rangle=\operatorname{det}\left(\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 1 \\ 0 & 2 & 1\end{array}\right)=\langle-2,-1,2\rangle$

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

Perpendicular to Both Lines: $\langle-2,-1,2\rangle$

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

Perpendicular to Both Lines: $\langle-2,-1,2\rangle$

Vector Between Lines:

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$$
\ell_{1}:\left\{\begin{array}{l}
x=2+t \\
y=0 \\
z=-1+t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=3 \\
y=2 t \\
z=1+t
\end{array}\right.\right.
$$

Perpendicular to Both Lines: $\langle-2,-1,2\rangle$
Vector Between Lines: $\langle 1,0,2\rangle$

Problem 4 (1999):

(b) Calculate the distance between the two lines.

Problem 4 (1999):

(b) Calculate the distance between the two lines.

Problem 4 (1999):

(b) Calculate the distance between the two lines.

Problem 4 (1999):

(b) Calculate the distance between the two lines.

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$\frac{h}{|\langle 1,0,2\rangle|}=\cos \theta$

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$\frac{h}{|\langle 1,0,2\rangle|}=\cos \theta=\frac{\langle-2,-1,2\rangle \cdot\langle 1,0,2\rangle}{|\langle-2,-1,2\rangle||\langle 1,0,2\rangle|}$

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$\frac{h}{|\langle 1,0,2\rangle|}=\cos \theta=\frac{2}{|\langle-2,-1,2\rangle||\langle 1,0,2\rangle|}$

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$$
\frac{h}{|\langle 1,0,2\rangle|}=\frac{2}{\sqrt{9}|\langle 1,0,2\rangle|}
$$

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$$
h=\frac{2}{3}
$$

Problem 4 (1999):

(b) Calculate the distance between the two lines.

$$
h=\frac{2}{3}
$$

