GREEN'S THEOREM - QUICK VERSION

GREEN'S THEOREM - VERY QUICK

Definition: Let C be a curve in the xy-plane (say x = x(t) and y = y(t) with $a \leq t \leq b$). Then the *line integral*, denoted

$$\int_{\mathcal{C}} f(x,y) \, ds,$$

is the area of the region directly above this curve and below the surface z = f(x, y). **Definition:** Let C be a curve in the xy-plane (say x = x(t) and y = y(t) with $a \leq t \leq b$). Then the *line integral*, denoted

$$\int_{\mathcal{C}} f(x,y) \, ds,$$

is the area of the region directly above this curve and below the surface z = f(x, y).

 \mathcal{C} : x = x(t), y = y(t) with $a \leq t \leq b$

$$\mathcal{C}$$
: $x = x(t), y = y(t)$ with $a \leq t \leq b$

Important: A variation (really a sum of two line integrals) is

$$\int_{\mathcal{C}} M(x,y) \, dx \, + \, N(x,y) \, dy$$

$$\mathcal{C}$$
: $x = x(t), y = y(t)$ with $a \leq t \leq b$

Important: A variation (really a sum of two line integrals) is

$$\int_{\mathcal{C}} M(x,y) \, dx \, + \, N(x,y) \, dy \ = \int_{a}^{b} \left(M(x,y) \, rac{dx}{dt} \, + \, N(x,y) \, rac{dy}{dt}
ight) \, dt.$$

Green's Theorem: Let C be a piecewise smooth, simple closed curve having a counterclockwise orientation that forms the boundary of a region S in the xy-plane.

Green's Theorem: Let C be a piecewise smooth, simple closed curve having a counterclockwise orientation that forms the boundary of a region S in the xy-plane. If M(x, y) and N(x, y) have continuous partial derivatives on S and its boundary C, then

 $\oint_{\mathcal{C}} M(x,y) \, dx \, + \, N(x,y) \, dy$ $= \iint_{S} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA.$