Lagrange Multiplier Problem From 1998 Final Exam

Part II, Problem 2: The maximum and minimum values must occur at points (x, y) where

$$
6 x y+9 x^{2}=\lambda 2 x, \quad 3 x^{2}+6 y^{2}=\lambda 2 y, \quad \text { and } \quad x^{2}+y^{2}=1
$$

for some λ.
First, suppose $x=0$, so the first equation is satisfied. Since $x=0$ and $x^{2}+y^{2}=1$, we must have $y= \pm 1$, and the third equation is satisfied. Substituting $x=0$ and $y= \pm 1$ into the second equation, we get $6= \pm 2 \lambda$. Taking $\lambda= \pm 3$, we see that the second equation is also satisfied. So we need to consider the two points $(x, y)=(0, \pm 1)$.

Now, suppose $x \neq 0$. Dividing by x in the first equation, we obtain $6 y+9 x=2 \lambda$. Substituting this value for 2λ in the second equation gives $3 x^{2}+6 y^{2}=(6 y+9 x) y=6 y^{2}+9 x y$. Subtracting $6 y^{2}$ from both sides, we get $3 x^{2}=9 x y$. Since $x \neq 0$, we can divide by $3 x$ to get $x=3 y$. Plugging this into the constraint $x^{2}+y^{2}=1$, we obtain $10 y^{2}=1$ so $y= \pm 1 / \sqrt{10}$ so that $x= \pm 3 / \sqrt{10}$ (with x and y of the same sign since $x=3 y$). Thus, we need to consider the two points $(3 / \sqrt{10}, 1 / \sqrt{10})$ and $(-3 / \sqrt{10},-1 / \sqrt{10})$.

Calculating $f(x, y)$ for each of the points

$$
(0, \pm 1), \quad(3 / \sqrt{10}, 1 / \sqrt{10}), \quad \text { and } \quad(-3 / \sqrt{10},-1 / \sqrt{10})
$$

gives that the maximum value of $f(x, y)$ given the constraint $x^{2}+y^{2}=1$ is $f(3 / \sqrt{10}, 1 / \sqrt{10})=$ $11 / \sqrt{10}$ and the minimum value is $f(-3 / \sqrt{10},-1 / \sqrt{10})=-11 / \sqrt{10}$.

