Old Math 241 Test 2's

Some 1992 Solutions:

3. The chain rule gives

$$
\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} \cdot \frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial t}=y^{2} \sqrt{y} \cos (x+y) \cdot 3 \cdot 2 \cdot 3 w=18 w y^{2} \sqrt{y} \cos (x+y)
$$

4. We want both $\partial z / \partial x$ and $\partial z / \partial y$ to be 0 at P. Calculating the partial derivatives, we obtain

$$
3(x+y)^{2} x+(x+y)^{3}+2 x-1=0 \quad \text { and } \quad 3(x+y)^{2} x=0 .
$$

The second equation gives that either $x=0$ or $y=-x$. If $x=0$, then the first equation gives $y^{3}-1=0$ so that $y=1$. If $y=-x$, then the first equation gives $2 x-1=0$ so that $x=1 / 2$ and $y=-x=-1 / 2$. To get the z-coordinate of each point P, we plug in our values of x and y into the equation $z=(x+y)^{3} x+x^{2}-x$. We deduce that there are two such points P, namely $(0,1,0)$ and $(1 / 2,-1 / 2,-1 / 4)$.
5. Here, we have

$$
f_{x}=2 x+2 y+2, \quad f_{y}=2 x+4 y, \quad f_{x x}=2, \quad f_{y y}=4 \quad \text { and } \quad f_{x y}=2 .
$$

We want points where both $f_{x}=0$ and $f_{y}=0$. Since $f_{y}-f_{x}=2 y-2$, we deduce $y=1$. Taking $y=1$ in the equation $2 x+4 y=0$, we get $x=-2$. As $z=f(x, y)$, for $x=-2$ and $y=1$, we have $z=-1$. So there is one point, namely $(-2,1,-1)$, to consider for this problem. We have $D=2 \cdot 4-2^{2}=4$ and $f_{x x}>0$, so there is a relative minimum at $(-2,1,-1)$.
6. Since $f_{x}=y^{2}+5$ is never 0 , there are no points inside the disk to consider, and we need only consider the boundary. Using $y^{2}=4-x^{2}$ on the boundary, we deduce that if (x, y) is on the boundary then $f(x, y)=w(x)$ where

$$
w(x)=x\left(4-x^{2}\right)+3\left(4-x^{2}\right)+5 x-5=-x^{3}-3 x^{2}+9 x+7 .
$$

Since $x^{2}+y^{2}=4$, we are interested in finding the extrema for $w(x)$ with $-2 \leq x \leq 2$. As $w^{\prime}(x)=-3 x^{2}-6 x+9=-3(x-1)(x+3)$ and -3 is not in the interval $[-2,2]$, we are interested in $w(x)$ for $x \in\{-2,1,2\}$ (note that the endpoints of the interval $[-2,2]$ are included here). Since $w(-2)=8-12-18+7=-15, w(1)=-1-3+9+7=12$, and $w(2)=-8-12+18+7=5$, we deduce that the (global) maximum value is 12 and the (global) minimum value is -15 .

Some 1994 Solutions:

1. Since $f(0, y)=0$, the function approaches (indeed equals) 0 as (x, y) approaches the origin along the line $x=0$ (the y-axis). Since $f(x, x)=1 / 2$, the function approaches (indeed equals) $1 / 2$ as (x, y) approaches the origin along the line $y=x$. Since $0 \neq 1 / 2$, these two limiting values are not equal, and we deduce that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
2. Using $\|\vec{v}\|=\sqrt{10}$, we obtain that $\vec{u}=\langle 1 / \sqrt{10}, 3 / \sqrt{10}\rangle$ is a unit vector in the direction of \vec{v}. The problem is to determine the value of $D_{\vec{u}} f(1,-1)$. Now, using $\nabla f=\left\langle 2 x y, x^{2}+2 y\right\rangle$, we obtain that $\nabla f(1,-1)=\langle-2,-1\rangle$ and, hence, $D_{\vec{u}} f(1,-1)=\nabla f(1,-1) \cdot \vec{u}=-5 / \sqrt{10}$.
3. We take $F(x, y, z)=x^{2}-2 y^{2}-x y z^{2}$. Since $\nabla F=\left\langle 2 x-y z^{2},-4 y-x z^{2},-2 x y z\right\rangle$, we get $\nabla F(1,-1,-1)=\langle 3,3,-2\rangle$. Therefore, the tangent plane is of the form $3 x+3 y-2 z=k$. Since $(1,-1,-1)$ is on the plane, we deduce $k=3-3+2=2$ and the plane is $3 x+3 y-2 z=2$.
4. The chain rule gives

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s}=\left(3 x^{2} y+y^{2}-1\right) \cdot\left(e^{s} t\right)+\left(x^{3}+2 x y\right) \cdot\left(t^{2} e^{s t}\right) \\
& =\left(3 t^{3} e^{2 s+s t}+t^{2} e^{2 s t}-1\right) \cdot\left(e^{s} t\right)+\left(t^{3} e^{3 s}+2 t^{2} e^{s+s t}\right) \cdot\left(t^{2} e^{s t}\right)
\end{aligned}
$$

6. Setting $f_{x}=12 x-6=0$ and $f_{y}=6 y=0$, we deduce that $(x, y)=(1 / 2,0)$. Since $(1 / 2,0)$ is in R, we consider $f(1 / 2,0)=3 / 2-3-9=-21 / 2$. On the boundary of R, we have $y^{2}=4-x^{2}$ so that $f(x, y)=6 x^{2}+3\left(4-x^{2}\right)-6 x-9=3 x^{2}-6 x+3$. Given $-2 \leq x \leq 2$ on the boundary, we are interested in the extrema of $w(x)=3 x^{2}-6 x+3$ on the interval $[-2,2]$. Since $w^{\prime}(x)=6 x-6$, we consider $w(x)$ at $x=1$ and at the endpoints of our interval $[-2,2]$. We have $w(-2)=27$, $w(1)=0$ and $w(2)=3$. These are possible extrema for $f(x, y)$ on the boundary of R. Recalling $f(1 / 2,0)=-21 / 2$, we deduce that the global maximum value of $f(x, y)$ on R is 27 and the global minimum value of $f(x, y)$ on R is $-21 / 2$.
7. We have

$$
\begin{gathered}
f_{x}=\left(3 y^{4}+1\right)(2 x-2), \quad f_{y}=12 y^{3}\left(x^{2}-2 x+2\right)-36 y^{2}+24 y \\
f_{x x}=2\left(3 y^{4}+1\right), \quad f_{y y}=36 y^{2}\left(x^{2}-2 x+2\right)-72 y+24, \quad \text { and } \quad f_{x y}=12 y^{3}(2 x-2) .
\end{gathered}
$$

Setting $f_{x}=0$, we deduce $x=1$. Taking $x=1$ in the equation $f_{y}=0$ gives $12 y^{3}-36 y^{2}+24 y=0$. Since $12 y^{3}-36 y^{2}+24 y=12 y(y-1)(y-2)$, we deduce that the critical points are $(x, y)=(1,0)$, $(1,1)$ and $(1,2)$. Since $D=f_{x x} f_{y y}-f_{x y}^{2}$, we get
$D(1,0)=2 \cdot 24-0^{2}>0, \quad D(1,1)=8 \cdot(-12)-0^{2}<0, \quad$ and $\quad D(1,2)=98 \cdot 24-0^{2}>0$.
Noting the signs of $f_{x x}$ at these points (all positive), there is a local minimum at $(1,0)$ and at $(1,2)$ and a saddle point at $(1,1)$.

Some 1998 Solutions:

1. (a) Since $f_{x}=2 x$ and $f_{y}=-2 y$, we get $\nabla f(0,1)=\langle 0,-2\rangle$. A unit vector in the direction of $\langle 1,1\rangle$ is $\vec{u}=\langle 1 / \sqrt{2}, 1 / \sqrt{2}\rangle$. Thus, the answer is $D_{\vec{u}} f(0,1)=\langle 0,-2\rangle \cdot\langle 1 / \sqrt{2}, 1 / \sqrt{2}\rangle=-\sqrt{2}$.
(b) The maximum value of the directional derivative at $(0,1)$ is $\|\nabla f(0,1)\|=\|\langle 0,-2\rangle\|=2$.
2. Taking $F(x, y, z)=x^{3}-x \sin (y)+z^{2}$, we get

$$
\nabla F=\left\langle 3 x^{2}-\sin y,-x \cos y, 2 z\right\rangle \quad \text { and } \quad \nabla F(-1,0,1)=\langle 3,1,2\rangle .
$$

Hence, we can use $3 x+y+2 z=k$ for the equation of the plane where $k=-3+2=-1$ (obtained from the fact that $(-1,0,1)$ is on the plane). Thus, the plane is $3 x+y+2 z=-1$.
6. (a) On the circle, $x^{2}+y^{2}=4$ so that
$f(x, y)=9 x^{2}+6 y^{2}+6 x+4=3 x^{2}+6\left(x^{2}+y^{2}\right)+6 x+4=3 x^{2}+24+6 x+4=3 x^{2}+6 x+28$.
Since $-2 \leq x \leq 2$ on the circle, we are interested in finding the extrema of $w(x)=3 x^{2}+6 x+28$ where $-2 \leq x \leq 2$. Since $w^{\prime}(x)=6 x+6=0$ precisely when $x=-1$ and since -1 is in the interval $[-2,2]$, we are left with comparing the numbers $w(-2)=28, w(-1)=25$ and $w(2)=52$. Therefore, on the circle, the global maximum value is 52 and the global minimum value is 25 .
(b) Observe that $f_{x}=18 x+6=6(3 x+1)=0$ and $f_{y}=12 y=0$ precisely when $x=-1 / 3$ and $y=0$. Also, the point $(-1 / 3,0)$ is in R. So we consider $f(-1 / 3,0)=1-2+4=3$ and compare this with the extrema we already found on the boundary of R in part (a). The global maximum on R is 52 , and the global minimum is 3 .
7. We have

$$
f_{x}=4 x y-8 y, \quad f_{y}=2 x^{2}-8 x+2 y, \quad f_{x x}=4 y, \quad f_{y y}=2, \quad \text { and } \quad f_{x y}=4 x-8
$$

Setting $f_{x}=0$, we see that $4 y(x-2)=0$ so that either $x=2$ or $y=0$. Putting $x=2$ in $f_{y}=0$, we deduce $-8+2 y=0$ and, hence, $y=4$. Putting $y=0$ in $f_{y}=0$, we deduce $2 x^{2}-8 x=2 x(x-4)=0$ and, hence, $x=0$ or $x=4$. This gives us three points to consider, namely $(2,4),(0,0)$ and $(4,0)$. Since $D=f_{x x} f_{y y}-f_{x y}^{2}$, we get

$$
D(2,4)=16 \cdot 2-0^{2}>0, \quad D(0,0)=0 \cdot 2-(-8)^{2}<0, \quad \text { and } \quad D(4,0)=0 \cdot 2-8^{2}<0 .
$$

Since $f_{x x}(2,4)=16>0$, there is a local minimum at $(2,4)$; there are saddle points at $(0,0)$ and $(4,0)$.

Some 1999 Solutions:

6. Since $f_{x}=3+y^{2}$ cannot equal 0 , the critical points are simply the points on the boundary of S, that is the points (x, y) satisfying $x^{2}+y^{2}=9$. On the boundary, $f(x, y)=3 x+x\left(9-x^{2}\right)=-x^{3}+12 x$. We set $w(x)=-x^{3}+12 x$ where x is in the interval $[-3,3]$ (this is the interval x lies on for (x, y) in S). Since $w^{\prime}(x)=-3 x^{2}+12=-3\left(x^{2}-4\right)=0$ precisely when $x= \pm 2$ and -2 and 2 are in $[-3,3]$, we need only consider $w(-3)=27-36=-9, w(-2)=8-24=-16$, $w(2)=-8+24=16$ and $w(3)=-27+36=9$. Note that when $x= \pm 2$ on the boundary $x^{2}+y^{2}=9$, we have $y= \pm \sqrt{5}$. Therefore, the (global) maximum value of $f(x, y)$ on S is 16 and it occurs at $(x, y)=(2, \pm \sqrt{5})$, and the (global) minimum value of $f(x, y)$ on S is -16 and it occurs at $(x, y)=(-2, \pm \sqrt{5})$.
7. We have

$$
f_{x}=4 x^{3}+4 y+y^{2}, \quad f_{y}=4 x+2 x y, \quad f_{x x}=12 x^{2}, \quad f_{y y}=2 x, \quad \text { and } \quad f_{x y}=4+2 y
$$

Since $4 x+2 x y=2 x(2+y)$, we want to consider points where $x=0$ or $y=-2$. Setting $x=0$ in $f_{x}=0$ gives $4 y+y^{2}=y(4+y)=0$ so that $y=0$ or $y=-4$. Setting $y=-2$ in $f_{x}=0$ gives
$4 x^{3}-4=4\left(x^{3}-1\right)=0$ so that $x=1$. Hence, the three critical points are $(0,0),(0,-4)$ and $(1,-2)$. Using $D=f_{x x} f_{y y}-f_{x y}^{2}$, we obtain
$D(0,0)=0 \cdot 0-4^{2}<0, \quad D(0,-4)=0 \cdot 0-(-4)^{2}<0, \quad$ and $\quad D(1,-2)=12 \cdot 2-0^{2}>0$.
Thus, there are saddle points at $(0,0)$ and $(0,-4)$ and a relative minimum at $(1,-2)$.

Some Spring 2001 Solutions:

1. (a) Since $\|\langle-3,4\rangle\|=5$, a unit vector going in the direction of $\langle-3,4\rangle$ is $\vec{u}=\langle-3 / 5,4 / 5\rangle$. Using $\nabla f=\left\langle 3 x^{2} y^{2}, 2 x^{3} y-1\right\rangle$, we obtain $\nabla f(1,-2)=\langle 12,-5\rangle$. We deduce that the answer is $D_{\vec{u}} f(1,-2)=\langle 12,-5\rangle \cdot\langle-3 / 5,4 / 5\rangle=(-36-20) / 5=-56 / 5$.
(b) Since $\|\nabla f(1,-2)\|=\|\langle 12,-5\rangle\|=\sqrt{144+25}=\sqrt{169}=13$, the minimal value of the directional derivative at $(1,-2)$ is -13 .
2. The chain rule gives

$$
\frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial u}=3 x^{2} y \cdot 4 u^{3}+\left(x^{3}-2 y\right) \cdot(-v \sin (u v))
$$

6. The value of $f_{x}=3 x^{2}+4 y^{2}$ is a sum of two squares (that is, $(\sqrt{3 x})^{2}$ and $\left.(2 y)^{2}\right)$ and can only be 0 if each of the squares is 0 . So $f_{x}=0$ implies that $(x, y)=(0,0)$. Since $f_{y}=8 x y=0$ at $(0,0)$ as well, we get that $(0,0)$ is a critical point. The other critical points are all the points on the boundary of S, that is the points (x, y) where $x^{2}+y^{2}=9$. To determine the maximum and minimum values of f on S, we consider the value of f at the critical points. First, $f(0,0)=0$. Next, we look at $f(x, y)$ where $x^{2}+y^{2}=9$. Here, $f(x, y)=w(x)$ where $w(x)=x^{3}+4 x\left(9-x^{2}\right)=-3 x^{3}+36 x$ and $-3 \leq x \leq 3$. Since $w^{\prime}(x)=-9 x^{2}+36=-9(x+2)(x-2)$ and both -2 and 2 are in the interval $[-3,3]$, we consider $w(-3)=-27, w(-2)=24-72=-48, w(2)=-24+72=48$ and $w(3)=27$. We deduce that the maximum value of $f(x, y)$ on S is 48 and the minimum value is -48 . These occur when $x= \pm 2$ on the boundary. In each case ($x=2$ and $x=-2$), the value of y on the boundary is $y= \pm \sqrt{5}$ (since we have $x^{2}+y^{2}=9$ on the boundary). This gives that the maximum occurs at $(2, \pm \sqrt{5})$ and the minimum occurs at $(-2, \pm \sqrt{5})$.
7. Observe that

$$
\begin{aligned}
& f_{x}=y^{3}-6 x^{2}+4 x-3 y, \quad f_{y}=3 x y^{2}-3 x \\
& f_{x x}=-12 x+4, \quad f_{y y}=6 x y, \text { and } \quad f_{x y}=3 y^{2}-3 .
\end{aligned}
$$

Since

$$
\begin{gathered}
f_{x}(1,-1)=0, \quad f_{y}(1,-1)=0, \quad f_{x}(-1,1)=-12, \quad f_{y}(-1,1)=0 \\
f_{x}(0,0)=0, \quad \text { and } \quad f_{y}(0,0)=0
\end{gathered}
$$

we see that $(1,-1)$ and $(0,0)$ are critical points and that $(-1,1)$ is not. Using $D=f_{x x} f_{y y}-f_{x y}^{2}$, we get $D(1,-1)=(-8)(-6)-0^{2}>0$ and $D(0,0)=4 \cdot 0-(-3)^{2}<0$. Since $-8<0$, we deduce that there is a relative maximum at $(1,-1)$. There is a saddle point at $(0,0)$.

