Old Math 241 Test 1's

Some 1992 Solutions:

3. The point $(1,2,2)$ is on the first given line and, hence, on \mathcal{P}. The vector $\vec{u}=\langle 1,0,1\rangle$ is parallel to this line and, hence, \mathcal{P}. The vector $\vec{v}=\langle 0,1,1\rangle$ is perpendicular to $y+z=4$ and, hence, parallel to \mathcal{P}. So

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right|=\langle-1,-1,1\rangle
$$

is a normal to \mathcal{P}. An equation for \mathcal{P} is $-x-y+z=-1$ or, equivalently, $x+y-z=1$.
4. The two vectors $\vec{u}=\langle 1,-1,-1\rangle$ and $\vec{v}=\langle 1,1,0\rangle$ (perpendicular to the planes) are perpendicular to the line of intersection of the planes. A vector going in the direction of this intersection is

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -1 & -1 \\
1 & 1 & 0
\end{array}\right|=\langle 1,-1,2\rangle
$$

Some 1994 Solutions:

4. From the cosine formula for dot products, we have

$$
\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\frac{3}{3 \cdot \sqrt{2}}=\frac{1}{\sqrt{2}}
$$

so $\theta=\pi / 4$.
5. Using the formula for a projection,

$$
\operatorname{proj}_{\vec{v}} \vec{u}=\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^{2}} \vec{v}=\frac{3}{\sqrt{2}^{2}}\langle 1,0,1\rangle=\langle 3 / 2,0,3 / 2\rangle
$$

9. The area of the parallelogram is $\|\overrightarrow{P Q} \times \overrightarrow{P R}\|$. As $\overrightarrow{P Q}=\langle-5,1,0\rangle$ and $\overrightarrow{P R}=\langle-5,0,1\rangle$,

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-5 & 1 & 0 \\
-5 & 0 & 1
\end{array}\right|=\langle 1,5,5\rangle
$$

Hence, the area is $\sqrt{1+25+25}=\sqrt{51}$.
10. First, find two points that lie on both \mathcal{P}_{1} and \mathcal{P}_{2}. Taking $x=2$, for example, we see that we can take $z=1$ and $y=0$. So the point $A=(2,0,1)$ is on the line of intersection of \mathcal{P}_{1} and \mathcal{P}_{2}. Similarly, taking $x=4$, we get that the point $B=(4,2,0)$ is on the line. The plane we are interested in contains these two points and the given point $C=(1,1,1)$. Thus, we need only calculate an equation for the plane containing A, B and C. Since $\overrightarrow{A B}=\langle 2,2,-1\rangle$ and $\overrightarrow{A C}=\langle 1,-1,0\rangle$, we have

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 2 & -1 \\
1 & -1 & 0
\end{array}\right|=\langle-1,-1,-4\rangle
$$

We can use $\langle 1,1,4\rangle$ then for our normal vector to the plane to get the equation $x+y+4 z=6$.

Some 1998 Solutions:

2. (a) As $\overrightarrow{Q P}=\langle 1,4,8\rangle$ and $\overrightarrow{Q R}=\langle 0,-6,-8\rangle$, the area is $\frac{1}{2}\|\langle 1,4,8\rangle \times\langle 0,-6,-8\rangle\|$. Since

$$
\langle 1,4,8\rangle \times\langle 0,-6,-8\rangle=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 4 & 8 \\
0 & -6 & -8
\end{array}\right|=\langle 16,8,-6\rangle
$$

the area is $\sqrt{256+64+36} / 2=\sqrt{356} / 2=\sqrt{89}$.
(b) Since

$$
\cos (\angle P Q R)=\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{\|\overrightarrow{Q P}\|\|\overrightarrow{Q R}\|}=\frac{-88}{9 \cdot 10}=-\frac{44}{45}
$$

the answer is $\cos ^{-1}(-44 / 45)$.
4. (a) The vector $\vec{v}=\langle 2,1,-1\rangle$ is perpendicular to the plane and, therefore, parallel to the line. Thus, the answer is

$$
\begin{aligned}
& x=-1+2 t \\
& y=2+t \\
& z=-t
\end{aligned}
$$

(b) The line can go in any direction that is perpendicular to the vector $\vec{v}=\langle 2,1,-1\rangle$ from part (a). Since $\vec{u}=\langle 0,1,1\rangle$ is such that $\vec{u} \cdot \vec{v}=0$, we can use \vec{u} for the direction of the line. Therefore, one of many answers is

$$
\begin{aligned}
& x=-1 \\
& y=2+t \\
& z=t
\end{aligned}
$$

Some 1999 Solutions:

1. (e) One answer can be obtained by choosing S so that $\overrightarrow{P Q}=\overrightarrow{R S}$. Such an S has the property that the distances $P Q$ and $R S$ are equal and the lines $\overleftrightarrow{P Q}$ and $\overleftrightarrow{R S}$ are parallel. Taking $S=(x, y, z)$, the equation $\overrightarrow{P Q}=\overrightarrow{R S}$ gives $\langle-2,-3,-1\rangle=\langle x-7, y-2, z+3\rangle$. So $S=(5,-1,-4)$ is one answer.
2. Let \mathcal{Q} be the plane we want that is perpendicular to \mathcal{P} and passes through $A=(1,4,-3)$ and $B=(1,5,-2)$. The vector $\vec{u}=\langle 1,1,-1\rangle$ is perpendicular to \mathcal{P} and, therefore, parallel to \mathcal{Q}. The vector $\overrightarrow{A B}=\langle 0,1,1\rangle$ is also parallel to \mathcal{Q}. Therefore, the vector

$$
\vec{u} \times \overrightarrow{A B}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right|=\langle 2,-1,1\rangle
$$

is normal to \mathcal{Q}. Thus, an equation for \mathcal{Q} is $2 x-y+z=-5$.
4. (a) See the answers to this test for a detailed explanation for this part.
(b) The vector $\vec{u}=\langle 1,0,1\rangle$ is parallel to ℓ_{1}, and the vector $\vec{v}=\langle 0,2,1\rangle$ is parallel to ℓ_{2}. The vector

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 0 & 1 \\
0 & 2 & 1
\end{array}\right|=\langle-2,-1,2\rangle
$$

is perpendicular to both \vec{u} and \vec{v}. The point $P=(2,0,-1)$ is on ℓ_{1} and the point $Q=(3,0,1)$ is on ℓ_{2}. The distance between the lines is obtained by computing

$$
\left\|\operatorname{proj}_{\langle-2,-1,2\rangle} \overrightarrow{P Q}\right\|=\frac{|\langle-2,-1,2\rangle \cdot\langle 1,0,2\rangle|}{\sqrt{4+1+4}}=\frac{2}{3}
$$

Some 2001 Spring Solutions:

6. (a) Since $\vec{n}=\langle 1,-1,2\rangle$ is perpendicular to the plane \mathcal{P}, this vector is parallel to ℓ. Therefore, parametric equations for the line are

$$
\begin{aligned}
& x=t \\
& y=-t \\
& z=1+2 t
\end{aligned}
$$

(b) Using the parametric equations for the line in the equation for the plane to find the point of intersection gives

$$
t-(-t)+2(1+2 t)=3 \quad \text { so that } \quad 6 t=1 \quad \text { and } \quad t=1 / 6
$$

Putting this value of t into the parametric equations for the line gives the intersection point of the line and the plane, namely $(1 / 6,-1 / 6,4 / 3)$.
7. (a) Replacing t with s in ℓ_{2} and equating gives

$$
1+t=s, \quad 2-t=5+s, \quad t=-1+s
$$

The first two of these imply $s-t=1$ and $s+t=-3$. Adding these two equations leads to $s=-1$. Plugging this into any of the other equations here gives $t=-2$. The value of $t=-2$ in ℓ_{1} and the value of $s=-1$ in ℓ_{2} both give the point $(-1,4,-2)$, so the lines intersect at $(-1,4,-2)$ (and no where else).
(b) Vectors going in the direction of ℓ_{1} and ℓ_{2}, respectively, are $\vec{v}_{1}=\langle 1,-1,1\rangle$ and $\vec{v}_{2}=$ $\langle 1,1,1\rangle$. If θ is the angle between these two vectors, then

$$
\cos \theta=\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|\left\|\vec{v}_{2}\right\|}=\frac{1}{3}
$$

Therefore, the smallest angle between the lines is $\cos ^{-1}(1 / 3)$. Note that the smallest angle between two lines is necessarily in the interval $[0, \pi / 2]$. Since $1 / 3>0$, the answer $\cos ^{-1}(1 / 3)$ is in this interval.

