Math 241: Test 2

Name _____

Instructions and Point Values: Put your name in the space provided above. Make sure that your test has seven different pages including one blank page. Work each problem below and show <u>ALL</u> of your work. You do not need to simplify your answers. Do <u>NOT</u> use a calculator.

Point Values: Problems (1) through (7) are worth 10 points each, Problem (8) is worth 14 points, and Problem (9) is worth 16 points.

(1) Let

$$f(x,y) = \frac{2x^3 - 3y^2}{x^2 + y^2}.$$

Does $\lim_{(x,y)\to(0,0)} f(x,y)$ exist? If so, what is it? If not, why not?

(2) Calculate f_{yyxx} where $f(x,y) = x^3y^2 - y^3x^2 + x\cos(\sqrt{x}) + y\cos x^3$.

(3) Let
$$R = \{(x, y) : 1 \le x \le 4, 1 \le y \le 4\}$$
 and

$$f(x,y) = \begin{cases} 1 & \text{for } 1 \le x < 3 \text{ and } 1 \le y \le 3 \\ -1 & \text{for } 3 \le x \le 4 \text{ and } 1 \le y \le 4 \\ 2 & \text{for } 1 \le x < 3 \text{ and } 3 < y \le 4. \end{cases}$$

Evaluate $\iint_R f(x, y) \, dA$. Answer:

(5) Find an equation for the tangent plane to the surface $xy^2z^3 = 3$ at the point (-3, 1, -1).

Equation of Tangent Plane:

:

(6) A drop of water is placed gently onto the surface of $z = 3y^2 - 4x^2$ at the point (1, 1, -1). In what direction does the drop begin to move (assume it goes downward in the direction of the steepest incline)? Express your answer as a unit vector $\langle a, b \rangle$ (so the raindrop will go in this direction along the surface).

Unit Vector:	
--------------	--

(7) Using the Chain Rule, compute $\frac{\partial w}{\partial t}$ where $w = z^2 y + \cos(xy) + z^3$, x = s - t, $y = s^2 + t$, and $z = s^2 + 9$.

You do not need to put your answer in terms of s and t (the variables x, y, and z can appear in your answer).

Answer:

(8) Determine the global maximum and minimum values for the function

$$f(x,y) = x^3 + 4x^2 + 4y^2 - 3x$$

on the set

$$S = \{(x, y) : x^2 + y^2 \le 4\}.$$

Also, indicate *all* points (x, y) in S where these values occur. (Note that the boundary of S is the circle of radius 2 centered at the origin.)

(9) Let

$$f(x,y) = x^2y - 2xy^2 - 2y^2 - y.$$

The following partial derivatives can be computed for this function (you do not need to compute them yourself):

$$f_x = 2y(x - y),$$
 $f_y = (x + 1)(x - 4y - 1),$
 $f_{xx} = 2y,$ $f_{xy} = 2x - 4y,$ and $f_{yy} = -4x - 4$

There are four critical points for f(x, y). Determine them and indicate (with justification) whether each determines a local maximum value of f(x, y), a local minimum value of f(x, y), or a saddle point of f(x, y).

