Answers to Test 1, Fall 2001

1. (a) $\langle 2,-2,2\rangle$
(b) $\langle 1,-8,3\rangle$
(c) $\langle 0,0,0\rangle$
2. (a) $9 / 2$
(b) 8
3. (a) $z_{1}\left(x_{1}+y_{1}\right)+z_{2}\left(x_{2}+y_{2}\right)+z_{3}\left(x_{3}+y_{3}\right)$
(b) $z_{1}\left(x_{1}+y_{1}\right)+z_{2}\left(x_{2}+y_{2}\right)+z_{3}\left(x_{3}+y_{3}\right)$ (possibly written differently)
(c) From (a) and (b), it follows that $\vec{w} \cdot(\vec{u}+\vec{v})=\vec{w} \cdot \vec{u}+\vec{w} \cdot \vec{v}$. Take $\vec{w}=\vec{u}+\vec{v}$ to get

$$
(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})=(\vec{u}+\vec{v}) \cdot \vec{u}+(\vec{u}+\vec{v}) \cdot \vec{v} .
$$

Taking $\vec{w}=\vec{u}$ and $\vec{w}=\vec{v}$, we obtain

$$
(\vec{u}+\vec{v}) \cdot \vec{u}=\vec{u} \cdot(\vec{u}+\vec{v})=\vec{u} \cdot \vec{u}+\vec{u} \cdot \vec{v} \quad \text { and } \quad(\vec{u}+\vec{v}) \cdot \vec{v}=\vec{v} \cdot(\vec{u}+\vec{v})=\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{v} .
$$

Combing the equations above, we deduce

$$
(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})=(\vec{u} \cdot \vec{u}+\vec{u} \cdot \vec{v})+(\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{v})=\vec{u} \cdot \vec{u}+2 \vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{v} .
$$

So (a) and (b) can be used to obtain the equation in the problem.
(d) Use (c) to deduce that

$$
\begin{aligned}
36 & =|\vec{u}+\vec{v}|^{2}=(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v}) \\
& =\vec{u} \cdot \vec{u}+2 \vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{v}=|\vec{u}|^{2}+2 \vec{u} \cdot \vec{v}+|\vec{v}|^{2}=16+2 \vec{u} \cdot \vec{v}+9 .
\end{aligned}
$$

It follows that

$$
\vec{u} \cdot \vec{v}=\frac{36-16-9}{2}=\frac{11}{2} .
$$

From $\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \theta=12 \cos \theta$, we obtain that the answer is

$$
11 / 24 \text {. }
$$

4. (a) $\left\langle t^{2} \cos t+2 t \sin t, t^{2} \sin t-2 t \cos t, 2\right\rangle$
(b) $t^{2}+2$
(c) 15
5. (a) $2 x-y=0$ (but most wrote $4 x-2 y=0$ which is fine)
(b) $(3 / 2,1 / 2,-1 / 2)$
6. There are infinitely many correct answers here. One is $x+y=1$.
7. (i) (d), y-axis
(ii) (e), $z=-1$
(iii) (a), $(0,1,0)$
