Answers to Test 1, 1999

1. (a) $\langle 2,3,1\rangle$
(b) $\sqrt{14}$
(c) $\pi / 3$
(d) $7 \sqrt{3} / 2$
(e) $S=(5,-1,-4)$ or $S=(9,5,-2)$ or $S=(3,3,2)$
2. (a) $\left\langle 6,3 t^{2}, 6 t\right\rangle$
(b) $\langle 1,0,0\rangle$
(c) 7
3. $2 x-y+z=-5$
4. (a) If there is a $P=(x, y, z)$ on ℓ_{1} and ℓ_{2}, then there is some t and some s such that

$$
(x, y, z)=(2+t, 0,-1+t)=(3,2 s, 1+s) .
$$

Since $2+t=3, t=1$. Since $0=2 s, s=0$. But then $-1+t=0$ and $1+s=1$ so that $-1+t \neq 1+s$. This implies that P cannot exist. In other words, ℓ_{1} and ℓ_{2} do not intersect. Note now that $\langle 1,0,1\rangle$ is a vector parallel to ℓ_{1} and $\langle 0,2,1\rangle$ is a vector parallel to ℓ_{2}. Also, $\langle 1,0,1\rangle \neq c\langle 0,2,1\rangle$ for any number c (otherwise, $1=c \times 0$, which is impossible). Hence, ℓ_{1} and ℓ_{2} are not parallel.
(b) $2 / 3$
5. (i) (d), $(0,0,1 / 2)($ or $(0,0,-1 / 2))$
(ii) (b), a hyperbola
(iii) (a), ($0,0,0$)

