Math 241: Quiz 9 Solutions

1. Calculate cylindrical coordinates (r, θ, z) and spherical coordinates (ρ, θ, ϕ) for the point with rectangular coordinates $(x, y, z)=(\sqrt{3},-3,-2)$. Simplify your answers so that no trigonometric and no inverse trigonometric functions are used.

$$
\begin{aligned}
& (r, \theta, z)=\begin{array}{ll}
\left(2 \sqrt{3}, \frac{5 \pi}{3},-2\right) & \text { (simplify) } \\
(\rho, \theta, \phi)=\sqrt{x^{2}+y^{2}}=\sqrt{3+9}=\sqrt{12}=2 \sqrt{3} \\
& \left.x=r \cos \theta, \text { so } \cos \theta=\frac{x}{r}=\frac{\sqrt{3}}{2 \sqrt{3}}=\frac{2 \pi}{2}\right) \\
(\text { simplify }) & y=r \sin \theta, \text { so } \sin \theta=\frac{y}{r}=\frac{-3}{2 \sqrt{3}}=\frac{-\sqrt{3}}{2} \\
\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{3+9+4}=4 & \theta=\frac{5 \pi}{3} \text { (by previous two lines) } \\
z=\rho \cos \phi, \text { so } \cos \phi=\frac{z}{\rho}=\frac{-2}{4}=-\frac{1}{2} \text { which implies } \phi=\frac{2 \pi}{3}
\end{array}, l
\end{aligned}
$$

2. Calculate the volume of the solid, shown to the right, consisting of all points that lie on or inside the sphere

$$
x^{2}+y^{2}+z^{2}=4,
$$

on or above the $x y$-plane, and on or below the cone

$$
z=2 \sqrt{x^{2}+y^{2}}
$$

Simplify your answer so that no trigonometric and no inverse trigonometric functions are used.

Volume: \square (simplify)

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{\phi_{0}}^{\pi / 2} & \int_{0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\frac{8}{3} \int_{0}^{2 \pi} \int_{\phi_{0}}^{\pi / 2} \sin \phi d \phi d \theta \\
& =\left.\frac{8}{3} \int_{0}^{2 \pi}(-\cos \phi)\right|_{\phi_{0}} ^{\pi / 2} d \theta \\
& =\frac{8}{3} \int_{0}^{2 \pi}\left(\cos \phi_{0}\right) d \theta \\
& =\frac{16 \pi \cos \phi_{0}}{3}=\frac{32 \pi}{3 \sqrt{5}}
\end{aligned}
$$

$$
z=2 r \text { so } \rho \cos \phi=2 \rho \sin \phi
$$

$$
\tan \phi=\frac{1}{2} \text { (by previous line) }
$$

