Math 241: Quiz 8

Show ALL Work

Name

1. The function

$$
f(x, y)=5-x^{3}+27 x+y^{2}-4 y
$$

has two critical points. Find the points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ where the critical points occur, and determine whether there is a local maximum, a local minimum or a saddle point at each of the points.

$$
\begin{aligned}
& P_{1}=\begin{array}{|c|c|}
\hline(3,2) \\
\text { indicate point }
\end{array} \text { is a location of a } \begin{array}{c}
\text { saddle point } \\
\text { local max, local min, or saddle pt }
\end{array} \\
& P_{2}=\begin{array}{l}
\operatorname{l}^{(-3,2)} \text { indicate point }
\end{array} \text { is a location of a } \begin{array}{l}
\text { local minimum } \\
\text { local max, local min, or saddle pt }
\end{array}
\end{aligned}
$$

Solution: Setting $f_{x}=0$ and $f_{y}=0$, we get $-3 x^{2}+27=0$ and $2 y-4=0$. The first of these gives $x= \pm 3$ and the second gives $y=2$. So $P_{1}=(3,2)$ and $P_{2}=(-3,2)$ (or the other way around). Since $D=f_{x x} f_{y y}-f_{x y}^{2}=(-6 x) \cdot 2=-12 x$, we see that $D(3,2)=-36<0$, so $(3,2)$ is the location of a saddle point. Also, $D(-3,2)=36>0$. Since $f_{x x}(-3,2)=18>0$, there is a local minimum point at $(-3,2)$.
2. Calculate the minimum distance from the point $(1,2,1)$ to a point on the hyperboloid of one sheet given by

$$
\frac{x^{2}}{2}-y^{2}+(z-1)^{2}=1
$$

Minimum Distance:

Solution: We want to minimize the distance from a point (x, y, z) on the hyperboloid to the point $(1,2,1)$. We minimize the distance squared instead which is $(x-1)^{2}+(y-2)^{2}+(z-1)^{2}$. Since the point (x, y, z) is on the hyperboloid, we can use that $(z-1)^{2}=1-\left(x^{2} / 2\right)+y^{2}$ (from the equation of the hyperboloid). So the function we want to minimize is $f(x, y)=$ $(x-1)^{2}+(y-2)^{2}+1-\left(x^{2} / 2\right)+y^{2}$. From $f_{x}=2(x-1)-x=0$ and $f_{y}=2(y-2)+2 y=0$, we obtain $x=2$ and $y=1$. Since $(x, y, z)=(2,1, z)$ is on the hyperboloid, we also have $\left(2^{2} / 2\right)-1^{2}+(z-1)^{2}=1$. This gives $z=1$. So the point on the hyperboloid that gives the minimum (and note a minimum must exist) is $(2,1,1)$. We deduce that the minimum distance is the distance from $(2,1,1)$ to the point $(1,2,1)$, which is $\sqrt{2}$.

