Math 241: Quiz 7

1. Determine all points (x, y) where $f(x, y)=x^{2}-4 x+x y^{2}$ has a local minimum, a local maximum or a saddle point. There should be 3 such points. Indicate next to each point, whether the point is the location of a local minimum, a local maximum or a saddle point.

First Point:

Second Point: $(0,-2)$, Location of a \quad saddle point

Third Point:

Solution: Setting the partial derivatives to 0, we obtain

$$
f_{x}=2 x-4+y^{2}=0 \quad \text { AND } \quad f_{y}=2 x y=0
$$

The second of these implies that $x=0$ OR $y=0$. If $x=0$, then the first equation gives $-4+y^{2}=0$, so $y= \pm 2$. If $y=0$, then $2 x-4=0$, so $x=2$. This gives us the three points $(0,2),(0,-2)$ and $(2,0)$. For "local" extrema, we want to use

$$
D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=2 \cdot 2 x-(2 y)^{2}=4 x-4 y^{2} .
$$

Since $D(0, \pm 2)=-16<0$, there are saddle points at $(0,2)$ and $(0,-2)$. Since $D(2,0)=$ $8>0$ and $f_{x x}(2,0)=2>0$, there is a local minimum at $(2,0)$.

