Math 241: Quiz 7

1. There are two points on the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=24$ where the tangent plane is parallel to the plane $2 x+4 y+6 z=15$. What are those two points? Be sure to show work.

Points:
$(2,2,2)$
and \square (Give all 3 coordinates.)

Solution: The normal to the plane $2 x+4 y+6 z=15$ is $\vec{n}=\langle 2,4,6\rangle$. At a point (x, y, z) on the ellipsoid, the tangent plane has normal $\nabla F=\langle 2 x, 4 y, 6 z\rangle$. These planes will be parallel when these two vectors are parallel, that is when one is a non-zero multiple of the other. This happens then when there is a $k \neq 0$ such that $\nabla F=k \vec{n}$. This is the same as

$$
\langle 2 x, 4 y, 6 z\rangle=k\langle 2,4,6\rangle=\langle 2 k, 4 k, 6 k\rangle .
$$

So we want $x=k$ (so $2 x=2 k$), $y=k$ (so $4 y=4 k$), and $z=k$ (so $6 z=6 k$). Since (x, y, z) is on the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=24$, we obtain

$$
24=x^{2}+2 y^{2}+3 z^{2}=k^{2}+2 k^{2}+3 k^{2}=6 k^{2} .
$$

Therefore, $k^{2}=4$ and $k= \pm 2$. Since we are interested in points where $x=y=z=k$, we get the two points listed in the answers above.
2. Let

$$
z=x^{2} y-y^{4}, \quad x=s^{2} t^{3}-3 s t+\sin \left(s^{2}-1\right) \quad \text { and } \quad y=3 t^{3}-2 s+\cos (5 t)
$$

Calculate $\frac{\partial z}{\partial s}$ at the point where $s=1$ and $t=0$. Simplify your answer.
Answer: \square (Simplify.)

Solution: Given the formulas for x and y above, we see that when $s=1$ and $t=0$, we have $x=0$ and $y=-1$. The chain rule gives that $\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s}$. Also, at $s=1$ and $t=0$ and, hence, $x=0$ and $y=-1$, we have $\partial z / \partial x=2 x y=0, \partial z / \partial y=x^{2}-4 y^{3}=4$ and $\partial y / \partial s=-2$. Hence, at $s=1$ and $t=0$, we obtain

$$
\frac{\partial z}{\partial s}=0 \cdot \frac{\partial x}{\partial s}+4 \cdot(-2)=-8
$$

