Math 241: Quiz 6 Spring, 2020

Calculate the arc length of the curve traced by

$$
x=t^{3}-3 t, \quad y=\frac{4 t^{3}}{3}+4 t, \quad z=3 t^{2}
$$

where $0 \leq t \leq 3$. Simplify your answer.

Solution: First, we calculate

$$
x^{\prime}(t)=3 t^{2}-3, \quad y^{\prime}(t)=4 t^{2}+4, \quad \text { and } \quad z^{\prime}(t)=6 t .
$$

Next, we calculate

$$
\begin{aligned}
x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2} & =\left(3 t^{2}-3\right)^{2}+\left(4 t^{2}+4\right)^{2}+(6 t)^{2} \\
& =\left(9 t^{4}-18 t^{2}+9\right)+\left(16 t^{4}+32 t^{2}+16\right)+36 t^{2} \\
& =25 t^{4}+50 t^{2}+25 \\
& =\left(5\left(t^{2}+1\right)\right)^{2} .
\end{aligned}
$$

The arc length is given by

$$
\int_{0}^{3} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t=\int_{0}^{3} 5\left(t^{2}+1\right) d t=5\left(\frac{t^{3}}{3}+t\right)_{0}^{3}=5(9+3)=60
$$

