1. Find parametric equations for the tangent line to the curve given by

$$
x=1-t^{2}, \quad y=1-t^{3}, \quad z=e^{t+1}
$$

at the point $(0,2,1)$.
Parametric Equations of Line: $\begin{aligned} & x=2 t \\ & y=2-3 t \\ & z=1+t\end{aligned}$
Solution: Let $\vec{r}(t)=\left\langle 1-t^{2}, 1-t^{3}, e^{t+1}\right\rangle$. We first want to know the value of $t$ for which $\vec{r}(t)=\langle 0,2,1\rangle$. Checking, $\vec{r}(t)=\langle 0,2,1\rangle$ at $t=-1$ (and no other $t$ ). Next, we compute $\vec{r}^{\prime}(t)=\left\langle-2 t,-3 t^{2}, e^{t+1}\right\rangle$ and $\vec{r}^{\prime}(-1)=\langle 2,-3,1\rangle$. The vector $\vec{r}^{\prime}(-1)=\langle 2,-3,1\rangle$ is tangent to the curve traced by $\vec{r}(t)$ at $t=-1$, so the vector $\langle 2,-3,1\rangle$ is the direction of the line we want and the point $(0,2,1)$ is a point on the line. Hence, we get the answer above.
2. Find the arc length of the curve traced by

$$
x=7 t-\cos t, \quad y=t+7 \cos t, \quad z=5 \sqrt{2} \sin t
$$

where $0 \leq t \leq \pi$. Simplify your answer.

Arc lenth: $\square$
Solution: Take $\vec{r}(t)=\langle 7 t-\cos t, t+7 \cos t, 5 \sqrt{2} \sin t\rangle$. The formula we want to use is

$$
\text { Arc length }=\int_{0}^{\pi}\left\|\vec{r}^{\prime}(t)\right\| d t
$$

Here, $\vec{r}^{\prime}(t)=\langle 7+\sin t, 1-7 \sin t, 5 \sqrt{2} \cos t\rangle$ so that

$$
\begin{aligned}
\left\|\vec{r}^{\prime}(t)\right\|^{2} & =(7+\sin t)^{2}+(1-7 \sin t)^{2}+(5 \sqrt{2} \cos t)^{2} \\
& =49+14 \sin t+\sin ^{2} t+1-14 \sin t+49 \sin ^{2} t+50 \cos ^{2} t \\
& =50+50\left(\sin ^{2} t+\cos ^{2} t\right)=100
\end{aligned}
$$

Therefore, the answer is given by

$$
\int_{0}^{\pi}\left\|\vec{r}^{\prime}(t)\right\| d t=\int_{0}^{\pi} \sqrt{100} d t=\int_{0}^{\pi} 10 d t=10 \pi
$$

