x = 2t

1. Find parametric equations for the tangent line to the curve given by

$$x = 1 - t^2$$
, $y = 1 - t^3$, $z = e^{t+1}$

at the point (0, 2, 1).

Parametric Equations of Line: y = 2 - 3tz = 1 + t

Solution: Let $\overrightarrow{r}(t) = \langle 1 - t^2, 1 - t^3, e^{t+1} \rangle$. We first want to know the value of t for which $\overrightarrow{r}(t) = \langle 0, 2, 1 \rangle$. Checking, $\overrightarrow{r}(t) = \langle 0, 2, 1 \rangle$ at t = -1 (and no other t). Next, we compute $\overrightarrow{r}'(t) = \langle -2t, -3t^2, e^{t+1} \rangle$ and $\overrightarrow{r}'(-1) = \langle 2, -3, 1 \rangle$. The vector $\overrightarrow{r}'(-1) = \langle 2, -3, 1 \rangle$ is tangent to the curve traced by $\overrightarrow{r}(t)$ at t = -1, so the vector $\langle 2, -3, 1 \rangle$ is the direction of the line we want and the point (0, 2, 1) is a point on the line. Hence, we get the answer above.

2. Find the arc length of the curve traced by

$$x = 7t - \cos t, \quad y = t + 7\cos t, \quad z = 5\sqrt{2}\sin t,$$

where $0 \le t \le \pi$. Simplify your answer.

Arc lenth: 10π

Solution: Take $\overrightarrow{r}(t) = \langle 7t - \cos t, t + 7\cos t, 5\sqrt{2}\sin t \rangle$. The formula we want to use is

Arc length
$$= \int_0^{\pi} \|\overrightarrow{r}'(t)\| dt.$$

Here, $\overrightarrow{r}'(t) = \langle 7 + \sin t, 1 - 7 \sin t, 5\sqrt{2} \cos t \rangle$ so that

$$\|\vec{r}'(t)\|^2 = (7 + \sin t)^2 + (1 - 7\sin t)^2 + (5\sqrt{2}\cos t)^2$$

= 49 + 14 sin t + sin^2 t + 1 - 14 sin t + 49 sin^2 t + 50 cos² t
= 50 + 50(sin² t + cos² t) = 100.

Therefore, the answer is given by

$$\int_0^\pi \|\vec{r}'(t)\| \, dt = \int_0^\pi \sqrt{100} \, dt = \int_0^\pi 10 \, dt = 10\pi. \blacksquare$$