Math 241: Quiz 5

Show ALL Work

Name

Solutions

1. Two particles travel along the curves given by

$$\overrightarrow{r_1}(t) = \langle t^2, t, t^2 + t \rangle \quad \text{and} \quad \overrightarrow{r_2}(t) = \langle t^2 - t, 2t - 2, t^2 + t - 2 \rangle.$$

There are two points where their "paths" intersect. What are they?

Two points where paths intersect:

$$(0,0,0) \ (4/9,2/3,10/9)$$

Replacing the variable t with s in $\overrightarrow{r_2}(t)$, we want to find the t or the s for which

 $t^2 = s^2 - s, \quad t = 2s - 2, \quad \text{and} \quad t^2 + t = s^2 + s - 2.$

Plugging the second of these equations into the first gives $(2s-2)^2 = s^2 - s$. This is a quadratic equation. Squaring (and note $(2s-2)^2 = 4s^2 - 8s + 4$) and rearranging, we get $3s^2 - 7s + 4 = 0$. The quadratic formula or observing $3s^2 - 7s + 4 = (s-1)(3s-4)$ gives that s = 1 or s = 4/3. Plugging these values of s in to compute $\overrightarrow{r_2}(s)$ gives that the point of intersections are (0, 0, 0) and (4/9, 2/3, 10/9). (Note: This does not verify that the curves intersect at two points. To do that one should compute t = 2s - 2 which gives t = 0 or t = 2/3, and check that $\overrightarrow{r_1}(0) = \overrightarrow{r_2}(1)$ and $\overrightarrow{r_1}(2/3) = \overrightarrow{r_2}(4/3)$.)

2. Calculate the length of the curve given by

$$x = \frac{t^3}{3} - t$$
, $y = -t^2 + 2$, $z = \frac{t^3}{3} + t$, where $0 \le t \le 1$.

Length of curve: $4\sqrt{2}/3$

Taking $\overrightarrow{r}(t) = \langle x, y, z \rangle$ with x, y and z functions of t as in the problem, the length of the curve is $\int_0^1 \|\overrightarrow{r'}(t)\| dt$. Since $\overrightarrow{r'}(t) = \langle t^2 - 1, -2t, t^2 + 1 \rangle$, we have $\|\overrightarrow{r'}(t)\|^2 = (t^2 - 1)^2 + (-2t)^2 + (t^2 + 1)^2$ $= t^4 - 2t^2 + 1 + 4t^4 + t^4 + 2t^2 + 1$ $= 2(t^4 + 2t^2 + 1) = 2(t^2 + 1)^2$. Therefore, the length is $\int_0^1 \sqrt{2} (t^2 + 1) dt = \sqrt{2} \left(\frac{t^3}{3} + t\right)_0^1 = \frac{4\sqrt{2}}{3}$.