Math 241: Quiz 5

Show ALL Work
Name
Solutions

1. Two particles travel along the curves given by

$$
\overrightarrow{r_{1}}(t)=\left\langle t^{2}, t, t^{2}+t\right\rangle \quad \text { and } \quad \overrightarrow{r_{2}}(t)=\left\langle t^{2}-t, 2 t-2, t^{2}+t-2\right\rangle .
$$

There are two points where their "paths" intersect. What are they?

Two points where paths intersect:

$$
\begin{gathered}
(0,0,0) \\
(4 / 9,2 / 3,10 / 9)
\end{gathered}
$$

Replacing the variable t with s in $\overrightarrow{\boldsymbol{r}_{2}}(t)$, we want to find the t or the s for which

$$
t^{2}=s^{2}-s, \quad t=2 s-2, \quad \text { and } \quad t^{2}+t=s^{2}+s-2
$$

Plugging the second of these equations into the first gives $(2 s-2)^{2}=s^{2}-s$. This is a quadratic equation. Squaring (and note $(2 s-2)^{2}=4 s^{2}-8 s+4$) and rearranging, we get $3 s^{2}-7 s+4=0$. The quadratic formula or observing $3 s^{2}-7 s+4=$ $(s-1)(3 s-4)$ gives that $s=1$ or $s=4 / 3$. Plugging these values of s in to compute $\overrightarrow{r_{2}}(s)$ gives that the point of intersections are $(0,0,0)$ and $(4 / 9,2 / 3,10 / 9)$. (Note: This does not verify that the curves intersect at two points. To do that one should compute $t=2 s-2$ which gives $t=0$ or $t=2 / 3$, and check that $\overrightarrow{r_{1}}(0)=\overrightarrow{r_{2}}(1)$ and $\overrightarrow{r_{1}}(2 / 3)=\overrightarrow{r_{2}}(4 / 3)$.)
2. Calculate the length of the curve given by

$$
x=\frac{t^{3}}{3}-t, \quad y=-t^{2}+2, \quad z=\frac{t^{3}}{3}+t, \quad \text { where } 0 \leq t \leq 1
$$

Length of curve:

$$
4 \sqrt{2} / 3
$$

Taking $\vec{r}(t)=\langle x, y, z\rangle$ with x, y and z functions of t as in the problem, the length of the curve is $\int_{0}^{1}\left\|\overrightarrow{r^{\prime}}(t)\right\| d t$. Since $\overrightarrow{r^{\prime}}(t)=\left\langle t^{2}-1,-2 t, t^{2}+1\right\rangle$, we have

$$
\begin{aligned}
\left\|\overrightarrow{r^{\prime}}(t)\right\|^{2} & =\left(t^{2}-1\right)^{2}+(-2 t)^{2}+\left(t^{2}+1\right)^{2} \\
& =t^{4}-2 t^{2}+1+4 t^{4}+t^{4}+2 t^{2}+1 \\
& =2\left(t^{4}+2 t^{2}+1\right)=2\left(t^{2}+1\right)^{2}
\end{aligned}
$$

Therefore, the length is $\int_{0}^{1} \sqrt{2}\left(t^{2}+1\right) d t=\sqrt{2}\left(\frac{t^{3}}{3}+t\right)_{0}^{1}=\frac{4 \sqrt{2}}{3}$.

