Math 241: Quiz 4

Show ALL Work

Name
Solutions

1. Calculate an equation for the plane that passes through the point $(2,0,1)$ and is parallel to the plane $2 x-y+3 z=-4$.

Equation for Plane: $\quad 2 x-y+3 z=7$

Solution: The vector $\langle 2,-1,3\rangle$ is normal to the plane $2 x-y+3 z=-4$ and, therefore, will be normal to the parallel plane. Hence, an equation for the parallel plane is $2 x-y+3 z=d$ for some number d. Since the parallel plane passes through $(2,0,1)$, we see that $d=2 \cdot 2-$ $0+3 \cdot 1=7$. Thus, $2 x-y+3 z=7$ is an equation for the parallel plane.
2. The plane \mathcal{P} consists of the points (x, y, z) satisfying $x-y+z=0$. The point $A=(1,2,3)$ is not on the plane \mathcal{P}. Find a point B on the plane \mathcal{P} such that the distance from A to B is minimal. In other words, what is the point B on the plane \mathcal{P} that is nearest to the point A ?
$B=(1 / 3,8 / 3,7 / 3)$
Solution 1: The line $\overleftrightarrow{A B}$ through A and B is perpendicular to the plane \mathcal{P}, so the normal $\vec{n}=\langle 1,-1,1\rangle$ to \mathcal{P} is parallel (in the direction of) $\overleftrightarrow{A B}$. Since $A=(1,2,3)$ is on $\overleftrightarrow{A B}$, the points on line $\overleftrightarrow{A B}$ satisfy the parametric equations $x=1+t, y=2-t$ and $z=3+t$. The point B is the intersection of this line with the plane \mathcal{P}. Since \mathcal{P} is given by the equation $x-y+z=0$, the intersection of $\overleftrightarrow{A B}$ with \mathcal{P} is determined by the value of t satisfying $(1+t)-(2-t)+(3+t)=0$. This simplifies to $2+3 t=0$ or $t=-2 / 3$. Hence, the coordinates of B are given by $x=1+(-2 / 3)=1 / 3, y=2-(-2 / 3)=8 / 3$ and $z=3+(-2 / 3)=7 / 3$. In other words, $B=(1 / 3,8 / 3,7 / 3)$.

Solution 2: The vector $\vec{n}=\langle 1,-1,1\rangle$ is normal to the plane \mathcal{P}. The point $C=(0,0,0)$ satisfies the equation $x-y+z=0$ and so is on \mathcal{P}. Observe that $\overrightarrow{A C}=\langle-1,-2,-3\rangle$, and

$$
\overrightarrow{A B}=\operatorname{proj}_{\vec{n}} \overrightarrow{A C}=\frac{\vec{n} \cdot \overrightarrow{A C}}{\|\vec{n}\|^{2}} \vec{n}=\frac{-2}{3}\langle 1,-1,1\rangle=\left\langle\frac{-2}{3}, \frac{2}{3}, \frac{-2}{3}\right\rangle
$$

We can view $\overrightarrow{A B}$ as telling us how much each coordinate of A has to change to go from A to B. Thus, $B=(1+(-2 / 3), 2+(2 / 3), 3+(-2 / 3))=(1 / 3,8 / 3,7 / 3)$.

