Math 241: Quiz 3 SOLUTIONS

1. Let $A=(2,1,-3)$, and let \mathcal{P} be the plane given by $x+y-z=0$. Calculate the point B on the plane \mathcal{P} that is nearest to A. Simplify your answer.

Point B :

$$
(0,-1,-1)
$$

Solution 1: First, we find parametric equations for a line ℓ perpendicular to the plane \mathcal{P} that passes through A. Since a normal to the plane is $\langle 1,1,-1\rangle$, this vector is parallel to (in the direction of) ℓ. Since ℓ goes through A, parametric equations for ℓ are given by $x=2+t$, $y=1+t$ and $z=-3-t$. The point B is the point $(2+t, 1+t,-3-t)$ on ℓ which is also on \mathcal{P}. Since \mathcal{P} is given by $x+y-z=0$, we want

$$
(2+t)+(1+t)-(-3-t)=0 \quad \text { or, equivalently, } \quad 6+3 t=0
$$

This implies $t=-2$, so the point B is $(2-2,1-2,-3-(-2))=(0,-1,-1)$.
Solution 2: The point $Q=(0,0,0)$ is on the plane \mathcal{P} (any point Q on \mathcal{P} can be used here). We compute the projection of the vector $\overrightarrow{Q A}=\langle 2,1,-3\rangle$ onto the normal $\vec{n}=\langle 1,1,-1\rangle$ to plane \mathcal{P}. This is given by

$$
\operatorname{proj}_{\vec{n}} \overrightarrow{Q A}=\frac{\vec{n} \cdot \overrightarrow{Q A}}{\|\vec{n}\|^{2}} \vec{n}=\frac{6}{\sqrt{3}^{2}}\langle 1,1,-1\rangle=2\langle 1,1,-1\rangle=\langle 2,2,-2\rangle
$$

We want then a point B such that $\overrightarrow{B A}=\langle 2,2,-2\rangle$. Since $A=(2,1,-3)$, we deduce $B=(2-2,1-2,-3-(-2))=(0,-1,-1)$.
2. The two planes given by $x-2 y+z=4$ and $2 x+y-2 z=5$ intersect in a line ℓ. Find the parametric equations for the line ℓ^{\prime} which is parallel to ℓ and passes through the point $(1,1,0)$.

Line: $\begin{aligned} & x=1+3 t \\ & y=1+4 t \\ & z=5 t\end{aligned}$
Solution: The normals to the planes, given by $\overrightarrow{n_{1}}=\langle 1,-2,1\rangle$ and $\overrightarrow{n_{2}}=\langle 2,1,-2\rangle$, are both perpendicular to a vector parallel to ℓ and, hence, parallel to ℓ^{\prime}. So a vector perpendicular to both $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}$ will be parallel to ℓ^{\prime}. We can find such a vector by computing

$$
\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -2 & 1 \\
2 & 1 & -2
\end{array}\right|=\langle 3,4,5\rangle
$$

Since $(1,1,0)$ is on ℓ^{\prime}, parametric equations for ℓ^{\prime} are given by $x=1+3 t, y=1+4 t$ and $z=5 t$.

