Math 241: Quiz 3 SOLUTIONS

1. Let A = (2, 1, -3), and let \mathcal{P} be the plane given by x + y - z = 0. Calculate the point B on the plane \mathcal{P} that is nearest to A. Simplify your answer.

Point *B*: (0, -1, -1)

Solution 1: First, we find parametric equations for a line ℓ perpendicular to the plane \mathcal{P} that passes through A. Since a normal to the plane is $\langle 1, 1, -1 \rangle$, this vector is parallel to (in the direction of) ℓ . Since ℓ goes through A, parametric equations for ℓ are given by x = 2 + t, y = 1 + t and z = -3 - t. The point B is the point (2 + t, 1 + t, -3 - t) on ℓ which is also on \mathcal{P} . Since \mathcal{P} is given by x + y - z = 0, we want

(2+t) + (1+t) - (-3-t) = 0 or, equivalently, 6+3t = 0.

This implies t = -2, so the point B is (2 - 2, 1 - 2, -3 - (-2)) = (0, -1, -1).

Solution 2: The point Q = (0, 0, 0) is on the plane \mathcal{P} (any point Q on \mathcal{P} can be used here). We compute the projection of the vector $\overrightarrow{QA} = \langle 2, 1, -3 \rangle$ onto the normal $\overrightarrow{n} = \langle 1, 1, -1 \rangle$ to plane \mathcal{P} . This is given by

$$\operatorname{proj}_{\overrightarrow{n}} \overrightarrow{QA} = \frac{\overrightarrow{n} \cdot \overrightarrow{QA}}{\|\overrightarrow{n}\|^2} \overrightarrow{n} = \frac{6}{\sqrt{3}^2} \langle 1, 1, -1 \rangle = 2 \langle 1, 1, -1 \rangle = \langle 2, 2, -2 \rangle.$$

We want then a point *B* such that $\overrightarrow{BA} = \langle 2, 2, -2 \rangle$. Since A = (2, 1, -3), we deduce B = (2 - 2, 1 - 2, -3 - (-2)) = (0, -1, -1).

2. The two planes given by x - 2y + z = 4 and 2x + y - 2z = 5 intersect in a line ℓ . Find the parametric equations for the line ℓ' which is parallel to ℓ and passes through the point (1, 1, 0).

Line: $\begin{vmatrix} x = 1 + 3t \\ y = 1 + 4t \\ z = 5t \end{vmatrix}$

Solution: The normals to the planes, given by $\overrightarrow{n_1} = \langle 1, -2, 1 \rangle$ and $\overrightarrow{n_2} = \langle 2, 1, -2 \rangle$, are both perpendicular to a vector parallel to ℓ and, hence, parallel to ℓ' . So a vector perpendicular to both $\overrightarrow{n_1}$ and $\overrightarrow{n_2}$ will be parallel to ℓ' . We can find such a vector by computing

$$\overrightarrow{n_1} \times \overrightarrow{n_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 1 \\ 2 & 1 & -2 \end{vmatrix} = \langle 3, 4, 5 \rangle.$$

Since (1, 1, 0) is on ℓ' , parametric equations for ℓ' are given by x = 1 + 3t, y = 1 + 4t and z = 5t.