Solutions to Spring, 2015, Math 241, Quiz 3

For the problems below, lines ℓ_{1} and ℓ_{2} are given by the following parametric equations.

$$
\ell_{1}:\left\{\begin{array}{l}
x=-t \\
y=1-t \\
z=t
\end{array} \quad \ell_{2}:\left\{\begin{array}{l}
x=s \\
y=1-s \\
z=1-s
\end{array}\right.\right.
$$

1. Explain why the lines do NOT intersect. Use complete English sentences and be precise.

If t and s lead to a common point on ℓ_{1} and ℓ_{2} (i.e., an intersection point), then the three equations $-t=s, 1-t=1-s$ and $t=1-s$ will all be satisfied. Combining the first of these equations and the third of these equations, we obtain $-t+t=s+(1-s)$ (the left-hand sides of the equations added together equal the right-hand side of the equations added together). This simplifies to $0=1$, which is incorrect. So ℓ_{1} and ℓ_{2} do not intersect.

OR

Equating the x, y and z values for ℓ_{1} and ℓ_{2}, we get $-t=s, 1-t=1-s$ and $t=1-s$. The first equation implies $1-t=1+s$ (since $s=-t$). The second equation now implies $1+s=1-s$ which simplifies to $2 s=0$. We deduce that $s=0$. Also, $t=0$ (since $s=-t$). Plugging in $t=0$ and $s=0$ into the parametric equations for ℓ_{1} and ℓ_{2} give the points $(0,1,0)$ and $(0,1,1)$. These points are not equal, so ℓ_{1} and ℓ_{2} do not intersect.
2. Explain why the lines are NOT parallel. Use complete English sentences and be precise.

The line ℓ_{1} is parallel to the vector $\vec{v}_{1}=\langle-1,-1,1\rangle$, and the line ℓ_{2} is parallel to the vector $\vec{v}_{2}=\langle 1,-1,-1\rangle$. The lines ℓ_{1} and ℓ_{2} are not parallel because \vec{v}_{1} is not some number k times \vec{v}_{2}. To see the latter, suppose $\vec{v}_{1}=k \vec{v}_{2}$. Then comparing first components, we see that $k=-1$. But then $k \vec{v}_{2}=-\vec{v}_{2}=\langle-1,1,1\rangle \neq \vec{v}_{1}$. So no such k exists, and ℓ_{1} and ℓ_{2} are not parallel.
3. Calculate the distance between ℓ_{1} and ℓ_{2}. Do not use a formula for this distance (i.e., one where you just plug in numbers to get the answer) unless you derive the formula. I want to see how you are using vectors to get the answer.

Distance:

Solution: Let \vec{v}_{1} and \vec{v}_{2} be as in Problem 2. A vector perpendicular to both ℓ_{1} and ℓ_{2} is $\vec{v}_{1} \times \vec{v}_{2}=\langle 2,0,2\rangle$ (you should show the work for this). The point $P=(0,1,0)$ is on ℓ_{1}, and the point $Q=(0,1,1)$ is on ℓ_{2}. Therefore, the vector $\overrightarrow{P Q}=\langle 0,0,1\rangle$ is a vector going from a point on ℓ_{1} to a point on ℓ_{2}. The answer is obtained by finding the length of the projection of $\overrightarrow{P Q}$ onto $\langle 2,0,2\rangle$, which is $|\langle 0,0,1\rangle \cdot\langle 2,0,2\rangle| /\|\langle 2,0,2\rangle\|=2 / \sqrt{8}=1 / \sqrt{2}$.

