1. What is the volume of the parallelepiped which has vectors $\langle 1, 0, 1 \rangle$, $\langle 1, 1, 0 \rangle$ and $\langle 0, 1, -2 \rangle$ as adjacent edges? Show work and simplify your answer.

Volume: 1 (simplify)

Solution: The volume is the absolute value of the determinant

$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -2 \end{vmatrix} = 1(-2-0) - 0(-2-0) + 1(1-0) = -2 + 1 = -1,$$

so the answer is 1. (Comment: The rows of the determinant come from the components of the three vectors.) \blacksquare

2. What is the height of the parallepiped in the problem above where the base is determined by the edges formed from (1, 1, 0) and (0, 1, -2)? Show work and simplify your answer.

Height: 1/3 (simplify)

Solution: The area of the base of the parallelepiped is the area of the parallelogram with edges (1, 1, 0) and (0, 1, -2). If this area is A, then we have

$$A = \|\langle 1, 1, 0 \rangle \times \langle 0, 1, -2 \rangle \|.$$

Since

$$\langle 1,1,0\rangle \times \langle 0,1,-2\rangle = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 0 \\ 0 & 1 & -2 \end{vmatrix} = \langle -2,2,1\rangle,$$

we get $A = \sqrt{4+4+1} = 3$. If V is the volume of the parallelepiped and h is the height, then V = h A. From the first problem, V = 1. Since A = 3, we get h = V/A = 1/3.