Math 241: Quiz 2

Show ALL Work Name Solutions

1. Circle two (and only two) of the following vectors that are perpendicular, and justify that they are perpendicular by showing appropriate work (so that I can see that you have a legitimate reason for your answer).

$$(3,1,4)$$
 $(2,1,-2)$ $(-2,3,-1)$ $(5,1,-4)$

Solution: Two vectors are perpendicular if and only if their dot product is zero. Checking the various possibilities leads to

$$\langle 3, 1, 4 \rangle \cdot \langle 5, 1, -4 \rangle = 15 + 1 - 16 = 0,$$

so the vectors $\langle 3, 1, 4 \rangle$ and $\langle 5, 1, -4 \rangle$ should be circled above.

2. Let A = (2, 0, 1), B = (1, -2, 3) and C = (4, -2, 7). Using a projection vector (or the length of a projection vector), find the height of $\triangle ABC$ drawn from the vertex A to base \overline{BC} . Show work and simplify your answer. (Note: I am not saying that the length of the projection vector equals the height.)

Solution: You should think in terms of one of the above pictures. Either way the work is the same. You want to compute $\|\text{proj}_{\overrightarrow{BC}}\overrightarrow{BA}\|$ and $\|\overrightarrow{BA}\|$ and use the Pythagorean Theorem to get *h*. Since

$$\overrightarrow{BA} = \langle 1, 2, -2 \rangle$$
 and $\overrightarrow{BC} = \langle 3, 0, 4 \rangle$,

we obtain

$$\|\operatorname{proj}_{\overrightarrow{BC}}\overrightarrow{BA}\| = \frac{|\overrightarrow{BC} \cdot \overrightarrow{BA}|}{\|\overrightarrow{BC}\|} = \frac{|3-8|}{\sqrt{3^2+4^2}} = 1 \quad \text{and} \quad \|\overrightarrow{BA}\| = \sqrt{1^2+2^2+(-2)^2} = 3.$$

Therefore, $h = \sqrt{3^2 - 1^2} = \sqrt{8} = 2\sqrt{2}$. (Note that $\overrightarrow{BC} \cdot \overrightarrow{BA} = -5 < 0$ implies that $\angle ABC > 90^\circ$ so the second picture above is more accurate than the first.)