Math 241: Quiz 2

1. Circle two (and only two) of the following vectors that are perpendicular, and justify that they are perpendicular by showing appropriate work (so that I can see that you have a legitimate reason for your answer).

Solution: Two vectors are perpendicular if and only if their dot product is zero. Checking the various possibilities leads to

$$
\langle 3,1,4\rangle \cdot\langle 5,1,-4\rangle=15+1-16=0,
$$

so the vectors $\langle 3,1,4\rangle$ and $\langle 5,1,-4\rangle$ should be circled above.
2. Let $A=(2,0,1), B=(1,-2,3)$ and $C=(4,-2,7)$. Using a projection vector (or the length of a projection vector), find the height of $\triangle A B C$ drawn from the vertex A to base $\overline{B C}$. Show work and simplify your answer. (Note: I am not saying that the length of the projection vector equals the height.)

Answer:

Solution: You should think in terms of one of the above pictures. Either way the work is the same. You want to compute $\left\|\operatorname{proj}_{\overrightarrow{B C}} \overrightarrow{B A}\right\|$ and $\|\overrightarrow{B A}\|$ and use the Pythagorean Theorem to get h. Since

$$
\overrightarrow{B A}=\langle 1,2,-2\rangle \quad \text { and } \quad \overrightarrow{B C}=\langle 3,0,4\rangle
$$

we obtain

$$
\left\|\operatorname{proj}_{\overrightarrow{B C}} \overrightarrow{B A}\right\|=\frac{|\overrightarrow{B C} \cdot \overrightarrow{B A}|}{\|\overrightarrow{B C}\|}=\frac{|3-8|}{\sqrt{3^{2}+4^{2}}}=1 \quad \text { and } \quad\|\overrightarrow{B A}\|=\sqrt{1^{2}+2^{2}+(-2)^{2}}=3
$$

Therefore, $h=\sqrt{3^{2}-1^{2}}=\sqrt{8}=2 \sqrt{2}$. (Note that $\overrightarrow{B C} \cdot \overrightarrow{B A}=-5<0$ implies that $\angle A B C>90^{\circ}$ so the second picture above is more accurate than the first.)

