Math 241: Quiz 11

Show ALL Work
Name
Solutions

1. Calculate the value of

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{4}\left(x^{2}+y^{2}\right)^{3 / 2} d z d y d x
$$

Answer:
$4 \pi / 5$

Solution: We convert the integral to cylindrical coordinates (polar coordinates would also work after first integrating with respect to z). The solid described by the limits of integration is half of a cylinder with the base in the $x y$-plane consisting of the semi-circle of radius 1 centered at the origin and lying on and above the x-axis. The top of the half cylinder is bounded by $z=4$. Since $x^{2}+y^{2}=r^{2}$ and $d z d y d x=r d z d r d \theta$, the given integral is equivalent to

$$
\begin{aligned}
\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{4}\left(r^{2}\right)^{3 / 2} r d z d r d \theta & =\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{4} r^{4} d z d r d \theta \\
& =4 \int_{0}^{\pi} \int_{0}^{1} r^{4} d r d \theta=\frac{4}{5} \int_{0}^{\pi} d \theta=\frac{4 \pi}{5}
\end{aligned}
$$

2. Express the volume of the solid that lies inside the sphere $x^{2}+y^{2}+z^{2}=4$ and between the two half-cones given by $z=\sqrt{\left(x^{2}+y^{2}\right) / 3}$ and $z=-\sqrt{x^{2}+y^{2}}$ as a triple integral in spherical coordinates. Do not use inverse trigonometric functions in your answer.

Triple Integral: $\int_{0}^{2 \pi} \int_{\pi / 3}^{3 \pi / 4} \int_{0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta$
Solution: Note the picture is not an accurate drawing (the top cone should cut out more of the sphere than the bottom cone). The sphere has radius 2 and center $(0,0,0)$. The solid goes completely around the z-axis so that θ ranges from 0 to 2π. The angle ϕ goes from the angle from the
 positive z-axis of the top cone $z=\sqrt{\left(x^{2}+y^{2}\right) / 3}$ to the
angle from the positive z-axis of the bottom cone $z=-\sqrt{x^{2}+y^{2}}$. To calculate these angles, we convert the equations of the cones to spherical coordinates. For $z=\sqrt{\left(x^{2}+y^{2}\right) / 3}$, we have

$$
\rho \cos \phi=\frac{r}{\sqrt{3}}=\frac{\rho \sin \phi}{\sqrt{3}} .
$$

Rewriting this, we obtain $\tan \phi=\sqrt{3}$. Since $0 \leq \phi \leq \pi$, the top cone is an angle $\pi / 3$ from the positive z-axis. Converting the bottom cone $z=-\sqrt{x^{2}+y^{2}}$ to spherical coordinates, we obtain $\rho \cos \phi=-r=-\rho \sin \phi$ so that $\tan \phi=-1$. Since $0 \leq \phi \leq \pi$, the bottom cone is an angle $3 \pi / 4$ from the positive z-axis. Thus, ϕ goes from $\pi / 3$ to $3 \pi / 4$. Finally, since the sphere has radius 2 , the value of ρ ranges from 0 to 2 .

