Math 241: Quiz 11

Show ALL Work

Name

Solutions

1. Calculate the value of

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{4} \left(x^2 + y^2\right)^{3/2} dz \, dy \, dx.$$

Answer: $4\pi/5$

Solution: We convert the integral to cylindrical coordinates (polar coordinates would also work after first integrating with respect to z). The solid described by the limits of integration is half of a cylinder with the base in the xy-plane consisting of the semi-circle of radius 1 centered at the origin and lying on and above the x-axis. The top of the half cylinder is bounded by z = 4. Since $x^2 + y^2 = r^2$ and $dz dy dx = r dz dr d\theta$, the given integral is equivalent to

$$\int_0^{\pi} \int_0^1 \int_0^4 (r^2)^{3/2} r \, dz \, dr \, d\theta = \int_0^{\pi} \int_0^1 \int_0^4 r^4 \, dz \, dr \, d\theta$$
$$= 4 \int_0^{\pi} \int_0^1 r^4 \, dr \, d\theta = \frac{4}{5} \int_0^{\pi} d\theta = \frac{4\pi}{5}.$$

2. Express the volume of the solid that lies inside the sphere $x^2 + y^2 + z^2 = 4$ and between the two half-cones given by $z = \sqrt{(x^2 + y^2)/3}$ and $z = -\sqrt{x^2 + y^2}$ as a triple integral in spherical coordinates. Do not use inverse trigonometric functions in your answer.

Triple Integral:

$$\int_{0}^{2\pi} \int_{\pi/3}^{3\pi/4} \int_{0}^{2} \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

Solution: Note the picture is not an accurate drawing (the top cone should cut out more of the sphere than the bottom cone). The sphere has radius 2 and center (0, 0, 0). The solid goes completely around the z-axis so that θ ranges from 0 to 2π . The angle ϕ goes from the angle from the positive z-axis of the top cone $z = \sqrt{(x^2 + y^2)/3}$ to the

angle from the positive z-axis of the bottom cone $z = -\sqrt{x^2 + y^2}$. To calculate these angles, we convert the equations of the cones to spherical coordinates. For $z = \sqrt{(x^2 + y^2)/3}$, we have

$$\rho\cos\phi = \frac{r}{\sqrt{3}} = \frac{\rho\sin\phi}{\sqrt{3}}.$$

Rewriting this, we obtain $\tan \phi = \sqrt{3}$. Since $0 \le \phi \le \pi$, the top cone is an angle $\pi/3$ from the positive z-axis. Converting the bottom cone $z = -\sqrt{x^2 + y^2}$ to spherical coordinates, we obtain $\rho \cos \phi = -r = -\rho \sin \phi$ so that $\tan \phi = -1$. Since $0 \le \phi \le \pi$, the bottom cone is an angle $3\pi/4$ from the positive z-axis. Thus, ϕ goes from $\pi/3$ to $3\pi/4$. Finally, since the sphere has radius 2, the value of ρ ranges from 0 to 2.