1. Calculate the volume of the solid bounded above by the sphere $x^2 + y^2 + z^2 = 1$ and below by the cone $4z = 3\sqrt{x^2 + y^2}$. Justify your answer and simplify it. In particular, your answer should not involve any trigonometric or inverse trigonometric functions.

Solution 1: In spherical coordinates, the sphere is given by $\rho = 1$ and the cone is $\phi = \phi_0$ for some angle ϕ_0 . To compute ϕ_0 , we rewrite the equation of the cone $4z = 3\sqrt{x^2 + y^2}$ as

$$4\rho\cos\phi_0 = 4z = 3r = 3\rho\sin\phi_0.$$

This can be rewritten as $\tan \phi_0 = 4/3$. One draws a picture of a right triangle with $\tan \phi_0 = 4/3$, where ϕ_0 is one of the acute angles, to see that $\sin \phi_0 = 4/5$ (not important below) and $\cos \phi_0 = 3/5$ (important below). Then we see that the volume is

$$\int_{0}^{2\pi} \int_{0}^{\phi_{0}} \int_{0}^{1} \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta = \int_{0}^{2\pi} \int_{0}^{\phi_{0}} \frac{\rho^{3}}{3} \Big|_{0}^{1} \sin \phi \, d\rho \, d\phi \, d\theta$$
$$= \frac{1}{3} \int_{0}^{2\pi} \int_{0}^{\phi_{0}} \sin \phi \, d\rho \, d\phi \, d\theta = \frac{1}{3} \int_{0}^{2\pi} (-\cos \phi) \Big|_{0}^{\phi_{0}} \, d\phi \, d\theta$$
$$= \frac{1}{3} (-\cos \phi_{0} + 1) \int_{0}^{2\pi} \, d\theta = \frac{2\pi}{3} (-\cos \phi_{0} + 1)$$
$$= \frac{2\pi}{3} \left(-\frac{3}{5} + 1 \right) = \frac{4\pi}{15}. \quad \blacksquare$$

Solution 2: In cylindrical coordinates, the sphere can be written as $z = \sqrt{1 - r^2}$ and the cone as z = (3/4)r. These intersect in a circle. Specifically, they intersect when $\sqrt{1 - r^2} = (3/4)r$. Squaring, this becomes $1 - r^2 = (9/16)r^2$. Solving for r, we get r = 4/5 (note that r is always ≥ 0). In the xy-plane, we want points (x, y) that lie on or inside the circle given by r = 4/5. Hence, the volume is

$$\int_0^{2\pi} \int_0^{4/5} \int_{(3/4)r}^{\sqrt{1-r^2}} r \, dz \, dr \, d\theta.$$

This may be a little more difficult to integrate than the triple integral in spherical coordinates, but it is reasonably doable. You should get the same answer as above. ■