1. Calculate the volume of the solid bounded above by the sphere $x^{2}+y^{2}+z^{2}=1$ and below by the cone $4 z=3 \sqrt{x^{2}+y^{2}}$. Justify your answer and simplify it. In particular, your answer should not involve any trigonometric or inverse trigonometric functions.

Volume:

Solution 1: In spherical coordinates, the sphere is given by $\rho=1$ and the cone is $\phi=\phi_{0}$ for some angle ϕ_{0}. To compute ϕ_{0}, we rewrite the equation of the cone $4 z=3 \sqrt{x^{2}+y^{2}}$ as

$$
4 \rho \cos \phi_{0}=4 z=3 r=3 \rho \sin \phi_{0} .
$$

This can be rewritten as $\tan \phi_{0}=4 / 3$. One draws a picture of a right triangle with $\tan \phi_{0}=$ $4 / 3$, where ϕ_{0} is one of the acute angles, to see that $\sin \phi_{0}=4 / 5$ (not important below) and $\cos \phi_{0}=3 / 5$ (important below). Then we see that the volume is

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{\phi_{0}} \int_{0}^{1} \rho^{2} \sin \phi d \rho d \phi d \theta & =\left.\int_{0}^{2 \pi} \int_{0}^{\phi_{0}} \frac{\rho^{3}}{3}\right|_{0} ^{1} \sin \phi d \rho d \phi d \theta \\
& =\frac{1}{3} \int_{0}^{2 \pi} \int_{0}^{\phi_{0}} \sin \phi d \rho d \phi d \theta=\left.\frac{1}{3} \int_{0}^{2 \pi}(-\cos \phi)\right|_{0} ^{\phi_{0}} d \phi d \theta \\
& =\frac{1}{3}\left(-\cos \phi_{0}+1\right) \int_{0}^{2 \pi} d \theta=\frac{2 \pi}{3}\left(-\cos \phi_{0}+1\right) \\
& =\frac{2 \pi}{3}\left(-\frac{3}{5}+1\right)=\frac{4 \pi}{15}
\end{aligned}
$$

Solution 2: In cylindrical coordinates, the sphere can be written as $z=\sqrt{1-r^{2}}$ and the cone as $z=(3 / 4) r$. These intersect in a circle. Specifically, they intersect when $\sqrt{1-r^{2}}=$ $(3 / 4) r$. Squaring, this becomes $1-r^{2}=(9 / 16) r^{2}$. Solving for r, we get $r=4 / 5$ (note that r is always ≥ 0). In the $x y$-plane, we want points (x, y) that lie on or inside the circle given by $r=4 / 5$. Hence, the volume is

$$
\int_{0}^{2 \pi} \int_{0}^{4 / 5} \int_{(3 / 4) r}^{\sqrt{1-r^{2}}} r d z d r d \theta
$$

This may be a little more difficult to integrate than the triple integral in spherical coordinates, but it is reasonably doable. You should get the same answer as above.

