1. Write down a triple integral in cylindrical coordinates that represents the volume of the solid inside the cone $z=\sqrt{4 x^{2}+4 y^{2}}$ and below the sphere $z=\sqrt{45-x^{2}-y^{2}}$.

Triple Integral in Cylindrical Coordinates:

$$
\int_{0}^{2 \pi} \int_{0}^{3} \int_{2 r}^{\sqrt{45-r^{2}}} r d z d r d \theta
$$

Yes, I am a picture of the solid.

Solution: The cone and sphere intersect when $\sqrt{4 x^{2}+4 y^{2}}=\sqrt{45-x^{2}-y^{2}}$ which after squaring and simplifying gives $x^{2}+y^{2}=9$. So we are interested in points in the $x y$-plane which are inside the circle of radius 3 centered at the origin. In polar coordinates, we therefore want $0 \leq \theta<2 \pi$ and $0 \leq r \leq 3$. The two equations $z=\sqrt{4 x^{2}+4 y^{2}}$ and $z=\sqrt{45-x^{2}-y^{2}}$ convert to $z=\sqrt{4 r^{2}}=2 r$ and $z=\sqrt{45-r^{2}}$. This gives the triple integral in cylindrical coordinates as shown.
2. Fill in the six boxes below to correctly complete interchanging the order of integration.

$$
\begin{aligned}
& \int_{0}^{4} \int_{0}^{(12-3 x) / 4} \int_{0}^{(12-3 x-4 y) / 2} f(x, y, z) d z d y d x
\end{aligned}
$$

Solution: The picture to the right can be an optical illusion, so look at it correctly. The x-axis is numbered from 0 to 4 and is coming outward from the page. The plane on the right is given by $z=(12-3 x-4 y) / 2$ or equivalently by $3 x+4 y+2 z=12$. This intersects the $y z$-plane (the plane $x=0$) at the line $4 y+2 z=12$, simplifying to $2 y+z=6$. Using this information as a guide produces the answers above.

