## Some Solutions to the Final Exam from Spring 2001

Part I, Problem 5: The extrema must occur at points $(x, y)$ satisfying

$$
3 x^{2} y=\lambda 12 x^{3}, \quad x^{3}=\lambda 4 y^{3}, \quad \text { and } \quad 3 x^{4}+y^{4}=1,
$$

for some $\lambda$. When you do Lagrange multiplier problems, don't forget the constraint equation (the last equation above). If $x=0$, then the first two equations can hold by taking $\lambda=0$. In order for the third equation also to hold, we need $y= \pm 1$. So $(0, \pm 1)$ are two points to consider for extrema. Next suppose that $x \neq 0$. Then we divide by $3 x^{2}$ in the first equation to get $y=4 \lambda x$. Putting this into the second equation and dividing by $x^{3}$ gives $1=(4 \lambda)^{4}$. So $\lambda= \pm 1 / 4$. Since $y=4 \lambda x$, we get $y= \pm x$. Putting this into the third equation gives $4 x^{4}=1$ so that $x= \pm 1 / \sqrt{2}$ and $y= \pm 1 / \sqrt{2}$. We are wanting the extrema for $f(x, y)=x^{3} y$. The points $(x, y)$ to consider are

$$
(0, \pm 1),(1 / \sqrt{2}, \pm 1 / \sqrt{2}),(-1 / \sqrt{2}, \pm 1 / \sqrt{2})
$$

The maximum value is $f(1 / \sqrt{2}, 1 / \sqrt{2})=f(-1 / \sqrt{2},-1 / \sqrt{2})=1 / 4$ and the minimum value is $f(1 / \sqrt{2},-1 / \sqrt{2})=f(-1 / \sqrt{2}, 1 / \sqrt{2})=-1 / 4$.

Part II, Problem 1: Let $S$ be the square region enclosed by the $C$, and let

$$
f(x, y)=y x+3 x^{2} \sin y+3 y \quad \text { and } \quad g(x, y)=x^{3} \cos y-y^{3}+3 x
$$

Then Green's Theorem gives us that

$$
\begin{aligned}
\int_{C} f(x, y) d x+g(x, y) d y & =\iint_{S}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A=\iint_{S}\left(\left(3 x^{2} \cos y+3\right)-\left(x+3 x^{2} \cos y+3\right)\right) d A \\
& =\int_{0}^{1} \int_{0}^{1}(-x) d y d x=\int_{0}^{1}(-x) d x=-\left.\frac{x^{2}}{2}\right|_{0} ^{1}=-\frac{1}{2}
\end{aligned}
$$

Part II, Problem 2: (a) Note that $D$ is the square of the distance between a point on $\ell$ and a point on $\ell^{\prime}$. Since a point on $\ell$ can be represented as $(1-t,-1-t, 2)$ and a point on $\ell^{\prime}$ can be represented at $(-1+s, 3+s,-1+3 s)$, the distance formula gives

$$
\begin{aligned}
D & =((1-t)-(-1+s))^{2}+((-1-t)-(3+s))^{2}+(2-(-1+3 s))^{2} \\
& =(2-t-s)^{2}+(-4-t-s)^{2}+(3-3 s)^{2} .
\end{aligned}
$$

This last expression for $D$ (or the first one) is sufficient for an answer to this problem.
(b) We want the minimum of $D$, so we set its partial derivatives equal to 0 . This gives

$$
-2(2-t-s)-2(-4-t-s)=0 \text { and }-2(2-t-s)-2(-4-t-s)-6(3-3 s)=0 .
$$

Subtracting, we see that $6(3-3 s)=0$ so that $s=1$. Putting this in the first (or second) equation gives after simplifying that $t=-2$. Since a minimum distance between the lines must exist, it occurs where $t=-2$ and $s=1$.
(c) Recall that the point on line $\ell$ is $(1-t,-1-t, 2)$ and the point on $\ell^{\prime}$ is $(-1+s, 3+s,-1+3 s)$. At the minimum for $D$, we have $t=-2$ and $s=1$, so the points are $(3,1,2)$ and $(0,4,2)$.

Part II, Problem 3: (a) The integral is over the half-circle of radius 3 shown to the right. Switching to polar coordinates, the integral becomes

$$
\int_{\pi / 2}^{3 \pi / 2} \int_{0}^{3} \sqrt{r^{2}+16} r d r d \theta
$$

Evaluating by using the substitution $u=r^{2}+16$ gives that this integral is the same as

$$
\left.\int_{\pi / 2}^{3 \pi / 2} \frac{1}{3}\left(r^{2}+16\right)^{3 / 2}\right|_{0} ^{3} d \theta=\left.\int_{\pi / 2}^{3 \pi / 2} \frac{1}{3}\left(5^{3}-4^{3}\right)\right|_{0} ^{3} d \theta=\frac{61 \pi}{3} .
$$


(b) The integral is over the triangle depicted to the right. Switching the order of integration results in the integral

$$
\int_{0}^{2} \int_{y-1}^{1}\left(4 y-y^{2}\right)^{3 / 2} d x d y=\int_{0}^{2}(2-y)\left(4 y-y^{2}\right)^{3 / 2} d y
$$

Evaluating this last integral by substituting $u=4 y-y^{2}$ results in

$$
\left.\frac{1}{5}\left(4 y-y^{2}\right)^{5 / 2}\right|_{0} ^{2}=\frac{32}{5}
$$



Part II, Problem 4: (a) Suppose $a x+b y+c z=d$ is the plane $\mathcal{P}^{\prime}$. Since $\mathcal{P}^{\prime}$ intersects $\mathcal{P}$ at a $60^{\circ}$ angle, there is either a $60^{\circ}$ angle or a $120^{\circ}$ angle between a normal to the plane $\mathcal{P}^{\prime}$ and a normal to the plane $\mathcal{P}$. In other words, the angle between $\langle a, b, c\rangle$ (which is normal to $\mathcal{P}^{\prime}$ ) and $\langle 1,-2,-1\rangle$ (which is normal to $\mathcal{P}$ ) is either $60^{\circ}$ or $120^{\circ}$. This gives

$$
\pm \frac{1}{2}=\frac{\langle a, b, c\rangle \cdot\langle 1,-2,-1\rangle}{\|\langle a, b, c\rangle\|\|\langle 1,-2,-1\rangle\|}=\frac{a-2 b-c}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{6}}
$$

which is equivalent to what was to be shown. The exact same argument applies above if $a x+b y+$ $c z=d$ is the plane $\mathcal{P}^{\prime \prime}$ instead of the plane $\mathcal{P}^{\prime}$.
(b) Putting $a^{2}+b^{2}+c^{2}=6$ into the formula for part (a) gives

$$
a-2 b-c= \pm \frac{\sqrt{6}}{2} \sqrt{6}= \pm \frac{6}{2}= \pm 3 .
$$

This is all that was asked for.
(c) The points $Q$ and $R$ are on both the planes $\mathcal{P}^{\prime}$ and $\mathcal{P}^{\prime \prime}$. This means that $\overrightarrow{Q R}$ is parallel to these planes. Since $\langle a, b, c\rangle$ is a vector that is perpendicular to one of these planes, we obtain that $\overrightarrow{Q R}$ and $\langle a, b, c\rangle$ are perpendicular. This implies their dot product is 0 . Since $Q=(3,-2,4)$ and $R=(4,-1,3)$, we have $\overrightarrow{Q R}=\langle 1,1,-1\rangle$. Hence, $\langle 1,1,-1\rangle \cdot\langle a, b, c\rangle=0$, which gives $a+b-c=0$.
(d) Subtracting $a-2 b-c=3$ from $a+b-c=0$ gives $3 b=-3$ so that $b=-1$. The equations become $a-c=1$ and $a^{2}+c^{2}=5$. The first of these implies $a=c+1$. Plugging this into the other equation gives $(c+1)^{2}+c^{2}=5$ which, after a little work, is equivalent to $c^{2}+c-2=0$. Since $c^{2}+c-2=(c-1)(c+2)$, we deduce that either $c=1$ or $c=-2$. Recalling that $a=c+1$ and $b=-1$, we deduce that either $(a, b, c)=(2,-1,1)$ or $(a, b, c)=(-1,-1,-2)$.
(e) There are two planes passing through $Q$ and $R$ that make a $60^{\circ}$ angle with $\mathcal{P}$. Part (d) implies that they are of the form $2 x-y+z=d_{1}$ and $-x-y-2 z=d_{2}$ for some numbers $d_{1}$ and $d_{2}$. Since $Q=(3,-2,4)$ is on each plane, we deduce $d_{1}=12$ and $d_{2}=-9$. Hence, the planes $\mathcal{P}^{\prime}$ and $\mathcal{P}^{\prime \prime}$ can be written in the form $2 x-y+z=12$ and $x+y+2 z=9$.

