Answers to Math 241 Final, Spring 2001

Part I:

- (1) (a) $\langle 1, -4, 5 \rangle$ (b) -1 (c) $\langle 2, 3, 2 \rangle$
- (2) (a) -57/5(b) $\langle 3, 12 \rangle$ or $\langle 1, 4 \rangle$ or $\langle 1/\sqrt{17}, 4/\sqrt{17} \rangle$
- $\begin{array}{ccc} (3) & (0,1,0) \\ & (0,-1,0) \end{array}$

- (4) 0
- (5) Maximum 1/4Minimum -1/4
- (6) $36\pi\sqrt{3}/5$
- (7) (a) saddle
 - (b) not a critical point
 - (c) local minimum

Part II:

- (1) -1/2
- (2) (a) $(2-t-s)^2 + (-4-t-s)^2 + (3-3s)^2$ (b) t = -2 and s = 1(c) (3,1,2) and (0,4,2)
- (3) (a) $61\pi/3$ (b) 32/5
- (4) (a) Let $\vec{n_1} = \langle 1, -2, -1 \rangle$ and $\vec{n_2} = \langle a, b, c \rangle$. Then $\vec{n_1}$ is perpendicular to \mathcal{P} and $\vec{n_2}$ is perpendicular to ax + by + cz = d. The angle θ between $\vec{n_1}$ and $\vec{n_2}$ is either 60° or 120°. Deduce the given equation from $\vec{n_1} \cdot \vec{n_2} = |\vec{n_1}||\vec{n_2}|\cos\theta$.
 - (b) Use that $a^2 + b^2 + c^2 = 6$ in the equation in part (a).
 - (c) Suppose ax+by+cz = d is \mathcal{P}' or \mathcal{P}'' so that Q and R are on ax+by+cz = d. d. Then $\overrightarrow{QR} = \langle 1, 1, -1 \rangle$ is perpendicular to $\overrightarrow{n_2}$ in part (a). From $\overrightarrow{n_2} \cdot \overrightarrow{QR} = 0$, deduce a + b - c = 0.
 - (d) (-1, -1, -2) and (2, -1, 1)
 - (e) x + y + 2z = 9 and 2x y + z = 12