Answers to Math 241 Final, Spring 2001

Part I:

(1) (a) $\langle 1,-4,5\rangle$
(b) -1
(c) $\langle 2,3,2\rangle$
(4) 0
(5) Maximum $1 / 4$ Minimum $-1 / 4$
(2) (a) $-57 / 5$
(b) $\langle 3,12\rangle$ or $\langle 1,4\rangle$ or $\langle 1 / \sqrt{17}, 4 / \sqrt{17}\rangle$
(6) $36 \pi \sqrt{3} / 5$
(3) $(0,1,0)$
$(0,-1,0)$
(7) (a) saddle
(b) not a critical point
(c) local mininimum

Part II:

(1) $-1 / 2$
(2) (a) $(2-t-s)^{2}+(-4-t-s)^{2}+(3-3 s)^{2}$
(b) $t=-2$ and $s=1$
(c) $(3,1,2)$ and $(0,4,2)$
(3) (a) $61 \pi / 3$
(b) $32 / 5$
(4) (a) Let $\overrightarrow{n_{1}}=\langle 1,-2,-1\rangle$ and $\overrightarrow{n_{2}}=\langle a, b, c\rangle$. Then $\overrightarrow{n_{1}}$ is perpendicular to \mathcal{P} and $\overrightarrow{n_{2}}$ is perpendicular to $a x+b y+c z=d$. The angle θ between $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}$ is either 60° or 120°. Deduce the given equation from $\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}=$ $\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right| \cos \theta$.
(b) Use that $a^{2}+b^{2}+c^{2}=6$ in the equation in part (a).
(c) Suppose $a x+b y+c z=d$ is \mathcal{P}^{\prime} or $\mathcal{P}^{\prime \prime}$ so that Q and R are on $a x+b y+c z=$ d. Then $\overrightarrow{Q R}=\langle 1,1,-1\rangle$ is perpendicular to $\overrightarrow{n_{2}}$ in part (a). From $\overrightarrow{n_{2}} \cdot \overrightarrow{Q R}=0$, deduce $a+b-c=0$.
(d) $(-1,-1,-2)$ and $(2,-1,1)$
(e) $x+y+2 z=9$ and $2 x-y+z=12$

