Answer's to Math 241 Final, 1992

Part I:

(1) (a) 11
(4) $9 \pi / 2$
(8) (a) $2 \sqrt{3}$
(b) -4
(5) does not exist
(2) (a) $(r, \theta, z)=(4,4 \pi / 3,4)$
(6) Abs. Min. is -1
(No Abs. Max.)
(6) Abs. Min. is -1
(No Abs. Max.)
(b) $(\rho, \phi, \theta)=(4 \sqrt{2}, \pi / 4,4 \pi / 3)$
(3) (a) $\pi^{2} / 2$
(7) $2 / 7$
(10) -10
(b) 2
(9) (a) (f), $(0, \pm 1 / \sqrt{3}, 0)$
(b) (b), $0,1 / 3$, and 0

Part II:

(1) 81
(2) Saddle Point at $(0,0,3)$

Local Min. at both of $(1,-1,0)$ and $(-1,1,0)$
(3) 8π
(4) $\frac{81 \pi}{2}\left(1-\frac{\sqrt{6}}{3}\right)$
(5) 2

