## MATH 141: TEST 2

Name $\qquad$
Instructions and Point Values: Put your name in the space provided above. Check that you have 6 (different) test pages. Work each problem below and show ALL of your work. You do not need to simplify your answers. Do NOT use a calculator.

Problem (1) is worth 14 points.
Problem (2) is worth 9 points.
Problem (3) is worth 12 points.
Problem (4) is worth 18 points.
Problem (5) is worth 29 points.
Problem (6) is worth 18 points.
(1) (a) Calculate $\lim _{x \rightarrow \infty} \frac{2 x+1}{x+3}$. (SHOW WORK!!)
(b) Calculate $\lim _{x \rightarrow \infty} \sqrt{x^{4}+3 x^{2}-2 x}-x^{2}$.
(2) Calculate $d y$ for $y=\sin \left(x^{2}+1\right)$.
(3) Calculate $\int(3 x+2)^{6} d x$.
(4) (a) Use that $f(x+h) \approx f(x)+h f^{\prime}(x)$ to explain why $\sin (0.001) \approx 0.001$. Fill in the boxes below (but this is not sufficient for an explanation).

$$
\begin{aligned}
& f(x)=\square \\
& x=\square \\
& h=\square
\end{aligned}
$$

(b) Using the Mean Value Theorem, explain why $\sin (0.001) \leq 0.001$.
(5) For this page and the next page, $f(x)=3 x^{4}+8 x^{3}+6 x^{2}$.
(a) What are the critical points of $f(x)$ ?
(b) Where is $f(x)$ increasing?
(c) Where is $f(x)$ decreasing?
(d) What are the local maximum values of $f(x)$ ?
(e) What are the local minimum values of $f(x)$ ?
(f) Where is $f(x)$ concave up?
(g) Where is $f(x)$ concave down?
(h) What are the $x$-coordinates for the inflection points of $f(x)$ ?
(i) Graph $f(x)$ below.
(6) The points $(1,2)$ and $(4,4)$ are on the graph of $y=2 \sqrt{x}$. Find the minimum distance from $(7,0)$ to that portion of the graph of $y=2 \sqrt{x}$ from the point $(1,2)$ to the point $(4,4)$.

