1. Calculate the following:

(a)
$$\int 0 \, dx$$

(b) $\int_{1}^{4} \frac{dt}{\sqrt{t}}$
(c) $\int_{0}^{2} (x-2)(3x+1) \, dx$
(d) $\int \sqrt{x}(x^{2}+1) \, dx$
(e) $\int_{0}^{\pi/2} \sin(x/2) \, dx$
(f) $\int_{0}^{1} (t+1)^{7/2} t \, dt$

2. Calculate $\sum_{k=1}^{100} \left(\frac{1}{k(k+2)}\right)$.

3. Given that
$$\int_0^2 f(x) dx = 3$$
, $\int_1^3 f(x) dx = 5$, and $\int_0^3 f(x) dx = 6$, calculate $\int_0^1 f(x) dx$, $\int_1^2 f(x) dx$, and $\int_3^2 f(x) dx$.

4. Given that $F(x) = \int_{2}^{x} \sqrt{t^{3} + 1} dt$, calculate F(2), F'(2), and F''(x).

5. Suppose $y' - y^2 x = 0$. Also, suppose that y = 4 when x = 0. Here y = f(x). What is f(x)?

- 6. Calculate the area of the region bounded by the graphs of $x = y^2 y$ and y = x.
- 7. Let f(x) be a continuous function on an interval [a, b] with a < b. Suppose that

$$\int_{a}^{b} \left(f(x)\right)^{2} \, dx \leq \int_{a}^{b} f(x) \, dx.$$

Does it necessarily follow that $f(x) \leq 1$ for at least one value of x in [a, b]? Explain your answer.

8. Calculate the integral $\int_{a}^{b} f(x) dx$ boxed below in the following way. Divide the interval [a, b] into n equal subintervals, calculate the area of the corresponding circumscribed polygon, and then let $n \to \infty$. You should make use of the formulas

(*)
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 and $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Your final answer should be a number.

$$\int_0^3 (3x^2 + 2x + 1) \, dx$$

9. Prove the first formula given in (*) above.

10. The region in the first quadrant bounded by y = 4 and $y = x^2$ is rotated about the x-axis to form a solid. What is the volume of the solid?