MATH 141 PRACTICE PROBLEMS FOR TEST 3

1. Calculate the following:
(a) $\int 0 d x$
(b) $\int_{1}^{4} \frac{d t}{\sqrt{t}}$
(c) $\int_{0}^{2}(x-2)(3 x+1) d x$
(d) $\int \sqrt{x}\left(x^{2}+1\right) d x$
(e) $\int_{0}^{\pi / 2} \sin (x / 2) d x$
(f) $\int_{0}^{1}(t+1)^{7 / 2} t d t$
2. Calculate $\sum_{k=1}^{100}\left(\frac{1}{k(k+2)}\right)$.
3. Given that $\int_{0}^{2} f(x) d x=3, \int_{1}^{3} f(x) d x=5$, and $\int_{0}^{3} f(x) d x=6$, calculate $\int_{0}^{1} f(x) d x$, $\int_{1}^{2} f(x) d x$, and $\int_{3}^{2} f(x) d x$.
4. Given that $F(x)=\int_{2}^{x} \sqrt{t^{3}+1} d t$, calculate $F(2), F^{\prime}(2)$, and $F^{\prime \prime}(x)$.
5. Suppose $y^{\prime}-y^{2} x=0$. Also, suppose that $y=4$ when $x=0$. Here $y=f(x)$. What is $f(x)$?
6. Calculate the area of the region bounded by the graphs of $x=y^{2}-y$ and $y=x$.
7. Let $f(x)$ be a continuous function on an interval $[a, b]$ with $a<b$. Suppose that

$$
\int_{a}^{b}(f(x))^{2} d x \leq \int_{a}^{b} f(x) d x
$$

Does it necessarily follow that $f(x) \leq 1$ for at least one value of x in $[a, b]$? Explain your answer.
8. Calculate the integral $\int_{a}^{b} f(x) d x$ boxed below in the following way. Divide the interval $[a, b]$ into n equal subintervals, calculate the area of the corresponding circumscribed polygon, and then let $n \rightarrow \infty$. You should make use of the formulas

$$
\begin{equation*}
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \quad \text { and } \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} . \tag{*}
\end{equation*}
$$

Your final answer should be a number.
$\int_{0}^{3}\left(3 x^{2}+2 x+1\right) d x$
9. Prove the first formula given in $(*)$ above.
10. The region in the first quadrant bounded by $y=4$ and $y=x^{2}$ is rotated about the x-axis to form a solid. What is the volume of the solid?

