Name \qquad
Exam 2
Answer each problem completely and show all work in the space provided to get full credit. You may use the back of the page, but make a note of it. Carefully read the directions for each problem.

Problem 1. Complete the following differentiation formulas. Here, c and n are constants.
(1) $\frac{d}{d x}[c]=$
(9) $\frac{d}{d x}\left[x^{n}\right]=$
(2) $\frac{d}{d x}\left[e^{x}\right]=$
(10) $\frac{d}{d x}[\ln (x)]=$
(3) $\frac{d}{d x}[\sin (x)]=$
(11) $\frac{d}{d x}[\cos (x)]=$
(4) $\frac{d}{d x}[\tan (x)]=$
(12) $\frac{d}{d x}[\cot (x)]=$
(5) $\frac{d}{d x}[\sec (x)]=$
(13) $\frac{d}{d x}[\csc (x)]=$
(6) $\frac{d}{d x}[\arcsin (x)]=$
(14) $\frac{d}{d x}[\arccos (x)]=$
(7) $\frac{d}{d x}[\arctan (x)]=$
(15) $\frac{d}{d x}[\operatorname{arccot}(x)]=$
(8) $\frac{d}{d x}[\operatorname{arcsec}(x)]=$
(16) $\frac{d}{d x}[\operatorname{arccsc}(x)]=$

Problem 2. Find the equation for the line tangent to the curve $y=\sin \left(x^{2}\right)$ at the point $x=\sqrt{\pi}$.

Problem 3. Differentiate the following with respect to x (1) $f(x)=\ln \left(\sin ^{2}(x)\right)$
(2) $g(x)=\left(x^{1 / 2}-12\right)^{4} \arctan (x)$

Problem 4. Find the intervals of increase and decrease, and any local maxima and minima, for the function

$$
g(x)=\frac{x^{3}}{x^{3}+1} .
$$

Problem 5. Air is being added to a spherical balloon at a constant rate of $5 \mathrm{~cm}^{3} / \mathrm{min}$. At what rate is the radius growing when the volume is $36 \pi \mathrm{~cm}^{3}$? Recall that the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$.

Problem 6. Find $\frac{d y}{d x}$.

$$
2 x^{2}-4 x y+2 y^{2}=10
$$

Problem 7. Find $\frac{d y}{d x}$.

$$
y=\frac{e^{4 x^{2}} \cos (x)}{\left(x^{3}-1\right)^{2}}
$$

Problem 8. Find the following limits
(1) $\lim _{x \rightarrow 0} \frac{e^{4 x}-1}{\sin x}$
(2) $\lim _{x \rightarrow \infty}(1 / x)^{1 / x}$

Problem 9. The function $f(x)=\sqrt{64-x^{2}}$ satisfies the hypotheses of the Mean Value Theorem on the interval $[-8,8]$. Find a value of c inside the interval that the theorem guarantees.

Problem 10. Using the information given about the function $f(x)$, fill in the blanks with the desired information, and use it to sketch a graph of f. Be sure to label any important points, and draw any asymptotes.

Information about f:

- Domain is $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$
- $f(0)=2, f(1)=0, f(-4)=1$, $f(4)=-2, f(5)=-1.5$.
- $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=0$
- $\lim _{x \rightarrow-2} f(x)=\infty$ and $\lim _{x \rightarrow 2} f(x)=-1$
- $f^{\prime}(x)$ is positive on $(-4,-2) \cup(4, \infty)$, and negative on $(-\infty,-4) \cup(-2,4)$
- $f^{\prime}(x)$ is increasing on $(-\infty, 5)$, and decreasing everywhere else.
(1) Intercepts
(2) Hor. Asymptotes \qquad
(3) Vert. Asymptotes \qquad
(4) Increasing \qquad
(5) Decreasing \qquad
(6) Local Maxs \qquad
(7) Local Mins \qquad
(8) Concave up \qquad
(9) Concave dn \qquad
(10) Inflection pts \qquad

