Math 141-005/006
 Name

 Exam 2
 Name

Answer each problem completely and show all work in the space provided to get full credit. You may use the back of the page, but make a note of it. Carefully read the directions for each problem.

Problem 1. Complete the following differentiation formulas. Here, c and n are constants.

(1)
$$\frac{d}{dx}[c] =$$
 (9) $\frac{d}{dx}[x^n] =$

(2)
$$\frac{d}{dx}[e^x] =$$
 (10) $\frac{d}{dx}[\ln(x)] =$

(3)
$$\frac{d}{dx}[\sin(x)] =$$
 (11) $\frac{d}{dx}[\cos(x)] =$

(4)
$$\frac{d}{dx} [\tan(x)] =$$
 (12) $\frac{d}{dx} [\cot(x)] =$

(5)
$$\frac{d}{dx}[\sec(x)] =$$
 (13) $\frac{d}{dx}[\csc(x)] =$

(6)
$$\frac{d}{dx} [\arcsin(x)] =$$
 (14) $\frac{d}{dx} [\arccos(x)] =$

(7)
$$\frac{d}{dx} [\arctan(x)] =$$
 (15) $\frac{d}{dx} [\operatorname{arccot}(x)] =$

(8)
$$\frac{d}{dx} [\operatorname{arcsec}(x)] =$$
 (16) $\frac{d}{dx} [\operatorname{arccsc}(x)] =$

Problem 2. Find the equation for the line tangent to the curve $y = \sin(x^2)$ at the point $x = \sqrt{\pi}$.

Problem 3. Differentiate the following with respect to x(1) $f(x) = \ln(\sin^2(x))$

(2) $g(x) = (x^{1/2} - 12)^4 \arctan(x)$

Problem 4. Find the intervals of increase and decrease, and any local maxima and minima, for the function

$$g(x) = \frac{x^3}{x^3 + 1}.$$

Problem 5. Air is being added to a spherical balloon at a constant rate of $5 \text{cm}^3/\text{min}$. At what rate is the radius growing when the volume is $36\pi \text{ cm}^3$? Recall that the volume of a sphere is $V = \frac{4}{3}\pi r^3$.

Problem 6. Find $\frac{dy}{dx}$.

$$2x^2 - 4xy + 2y^2 = 10$$

Problem 7. Find $\frac{dy}{dx}$.

$$y = \frac{e^{4x^2}\cos(x)}{(x^3 - 1)^2}$$

Problem 8. Find the following limits 4x = 1

(1)
$$\lim_{x \to 0} \frac{e^{4x} - 1}{\sin x}$$

(2)
$$\lim_{x \to \infty} \left(1/x \right)^{1/x}$$

Problem 9. The function $f(x) = \sqrt{64 - x^2}$ satisfies the hypotheses of the Mean Value Theorem on the interval [-8, 8]. Find a value of c inside the interval that the theorem guarantees.

Problem 10. Using the information given about the function f(x), fill in the blanks with the desired information, and use it to sketch a graph of f. Be sure to label any important points, and draw any asymptotes.

Information about f:

- Domain is $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$
- f(0) = 2, f(1) = 0, f(-4) = 1,f(4) = -2, f(5) = -1.5.
- $\lim_{x \to -\infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = 0$ $\lim_{x \to -2} f(x) = \infty$ and $\lim_{x \to 2} f(x) = -1$ f'(x) is positive on $(-4, -2) \cup (4, \infty)$,
- and negative on $(-\infty, -4) \cup (-2, 4)$
- f'(x) is increasing on $(-\infty, 5)$, and decreasing everywhere else.
- (1) Intercepts _____ (2) Hor. Asymptotes _____ (3) Vert. Asymptotes _____ (4) Increasing _____ (5) Decreasing _____ (6) Local Maxs _____ (7) Local Mins ______ (8) Concave up _____ (9) Concave dn _____
- (10) Inflection pts _____

