## DISCRETE OPTIMIZATION: PROBLEM SET 4

**Problem 1.** For the graph pictured below, find the minimum weight spanning tree using

(1) Prim's algorithm starting from the marked vertex

(2) Kruskal's algorithm



**Problem 2.** Call the *reliability* of a graph the minimum reliability of any pair of vertices. (Recall: the reliability of a path P is the minimum weight of the edges of P, and the reliability a pair of vertices is the maximum reliability of all paths connecting the two vertices.) Find the reliability of the graph above, and point out the edge that achieves this value.

**Problem 3.** Prove that if G is a graph where all of the edge weights are distinct, the minimum spanning tree is unique. (Hint: Try contradiction.)

**Problem 4.** Suppose we have a graph G, and a minimum spanning tree T. Now we reduce the edge weight of e, one of the edges *not* in T. How can you find the minimum spanning tree in the new graph? (Don't say to run a spanning tree algorithm on the new graph. Use the information we know about T.)

**Problem 5.** Suppose we have a graph G, and a minimum spanning tree T. Suppose we also have some subset S of the vertices of G. Consider the graph G[S] formed by deleting vertices and edges outside of S, and similarly for T[S] (these are called *subgraphs induced by* S).

- (1) Show that if T[S] is connected, then it is a minimum spanning tree of G[S].
- (2) Is it true that if G[S] is connected, then T[S] is a minimum spanning tree of G[S]? (explain)