SUMMARY OF SOME OF THE MATH 550 MATERIAL
CONCERNING EXAM 3

Some Definitions:

e A 0-dimensional manifold P C R™ is a finite collection of points from R"™.

e A 1-dimensional manifold C C R"™ is called a “curve”’. It is required that
for every p € C there is an open ball B(p,¢) C R", centered at p of radius
e > 0, and an open interval (—a,a) (or a half-open interval (—a,0]), and
a smooth local parameterization f mapping (—a,a) (or (—a,0]) into R™,
with range C N B(p, €), such that f(0) = p and f/'(0) # 0.

e A 2-dimensional manifold S C R"™ is called a “surface”. It is required that
for every p € S there is an open ball B(p,e) C R™, and an open square
(—a,a) x (—a,a) (or a rectangle (—a,0] X (—a,a)), and a smooth local
parameterization f mapping (—a,a) X (—a,a) (or (—a,0] X (—a,a)) onto
SN B(p,€) such that f(0,0) = p and Df(0,0): R? — R" is 1-1.

e A 3-dimensional manifold R C R" is called a “region”. It is required that
for every p € S there is an open ball B(p,e) C R", and an open cube
(—a,a) x (=a,a) x (—a,a) (or a box (—a,0] X (—a,a) X (—a,a)), and a
smooth local parameterization f mapping (—a,a) X (—a,a) x (—a,a) (or
(—a,0] x (—a,a) x (—a,a)) onto S N B(p,¢) such that f(0,0,0) = p and
Df£(0,0,0): R® — R™ is 1-1.

e pis called an interior point of X if the domain of the local parameterization
f is an open set. Otherwise p is called a boundary point of X.

o If X is a k-dimensional manifold, k¥ > 1, and p € X then T,X = {(p, V) |
v = Df(0)u € R* u € R*}, where f is a local parameterization at p. If
k =0 then T,P = {(p,0) | 0 € R"}.

e Remark: (p,v) € T,X is interpreted as the vector v € R™ tangent to X" at
the point p € X. T, X is a vector space with the operations (p, v)+(p,w) =
(p,v+w), (p,v)a = (p,va), and zero vector (p,0). It is equipped with a
dot product inherited from R™: (p,v) - (p,w) = vI'w. We will often abuse
notation slightly by saying that v € T, X when in fact (p,v) € T,X.

o If X is a k-dimensional manifold, k¥ > 0, and p € X, then define Q,X =
{(p,(e1,...,ex)) | (e1,...,ex) is an ordered orthonormal basis of T, X'}. If
k =0 then Q,X = {(p, ()} is a set with one element. As with the tangent
space we will often abuse notation by writing: (e1,...,e;) € Q,X instead
of (p,(e1,...,ex)) € QX.

o If X is a k-dimensional manifold, & > 0, and p € X, then an orien-
tation of T,X is a mapping kp: QX — {+1,—1} such that whenever
(e1,...,er) € QpX, and A is a k x k matrix such that (eq,...,e)A € QX
then ky((e1,...,ex)A) = kKp(er,...,e;)det A (this condition is vacuous
when k = 0).

e If X is a k-dimensional manifold, k& > 0, then an orientation of X is a
mapping £: Upex QX — {+1,—1} such that s[g,x is an orientation of
T,X for each p € X, and whenever E4,...,E; are continuous vector fields
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on the connected open set U C X such that (Eq(p),...,Ex(p)) € Q,X for
all p € U then k(p, (E1(p),...,Ex(p))) is a constant function of p € U. If
k=0 and X =P then U,ep,P is in one-to-one correspondence with P,
so an orientation of P is any mapping x: P — {+1,—1}.

e Suppose X is a k-dimensional manifold, & > 1, and k: Upex QpX —
{+1,—1} is an orientation of X'. Suppose U is an open subset of R¥ and
f: U — X is a parameterization of f(U) C X. Suppose that for all ¢ € U
and for all (eq,...,ey) € QA we have that

K (e1,. .. ex)det[(er,. .. ,ek.)TDf(q)] > 0.

Then we say that the parameterization f is consistent with the orientation
K.

e Suppose X is a k-dimensional manifold, k& > 1, and dX is the set of bound-
ary points of X', which is a (k — 1)-dimensional manifold. If p € 90X let
f denote a local parameterization of X' at p. Then define u(p) € T, X to
be the unique unit vector such that u(p) - v = 0 for all v € T,0X and
u(p) - Df(0)é; > 0. u(p) is called the outward unit normal to OX at p.

e Suppose X is a k-dimensional manifold, & > 1, and 0X is the set of bound-
ary points of X'. Suppose k: Upex Q,X — {+1,—1} is an orientation of
X. Then the boundary orientation on X it induced by « is the mapping
R Upeax Qp0X — {+1,—1} defined by

Rpler,...,ex—1) = kp(u(p),er,...,ex_1)

for all p € OX and (eq,...,ex_1) € Q,0X, where u(p) is the outward unit
normal to X at p.

e A O-form on R™ is an ordinary smooth real-valued function f: U — R,
defined on an open subset U C R".

e If k> 1and fy,..., fr are O-forms defined on U C R"™ then define the basic
k-form dfy A\ dfs A--- A dfy to be the following mapping:

Dfi(x)vy ... Dfi(x)vg
Dfs(x ... Dfs(x
(dfs A dfs A A dfi)a(v,.. ., Vi) = det fQ(: A faloe

Dfip(z)vi ... Dfi(x)vg

where x € U and vq,...,vi € R™.

e Ifk>1andg,...,gn are O-forms defined on U C R", and w?,...,w™ are
basic k-forms on U, then giw' + - -+ + g,w™ is called a k-form on U. It is
a mapping of the arguments x € U and vy, ..., v, € R™ such that

(gt Fgmw™) o (Vi, o, VE) = g1(2)WE (Vi o Vi) g ()0 (Ve e V).
e If P is a O-dimensional manifold in R”, x: P — {41, —1} is an orientation
of P, and f is a O-form defined on the open set U C R"™, where P C U,

then define fpﬁ f= ZpG'P f(p)k(p).
e Suppose X is a k-dimensional manifold, £ > 1, and k: Upex QpX —
{+1,—1} is an orientation of X. Suppose U is an open subset of R¥ and
p: U — X is a parameterization of p(U) C X which is consistent with the
orientation k. Suppose w = giw' + -+ + gpw™ is a k-form on an open
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subset V' C R™ where p(U) C V. Let u = (uq,...,ux) be the standard
Cartesian coordinates on R*. Then define

/ w= / Wyuy(Dp(u)éy, ..., Dp(u)éy) duy . .. duy.
p(U),k uelU

If fis a O-form on R™ and « = (z1,...,x,) are the standard Cartesian
coordinates on R" then define df to be the 1-form df =" | 88—;2 dx;. This
agrees with our earlier definition of basic 1-forms. In fact, if f(z) = x; then
df.(v) = v; for all x € R™; hence we write df = dx;, omitting any reference
to x.

Ifw= 27:1 g;w’ is a k-form on U C R™, where the basic k-forms w’ are
wedge products of various dx;’s, i = 1,...,n, (and hence are independent
of z) then define the (k + 1)-form dw by the rule dw = Z;”:l dgj A w?.

Some Important Facts:

e If wis a k-form and 7 is an I-form then wAn = (—1)*nAw is a (k+1)-form.
e If w, n, and ¢ are differential forms then (W An) A ¢ =w A (n A Q).
e If wis a k-form, n and ( are [-forms, and f and g are O-forms, then

WA (fn+g¢) = fwuAn+gwAd.

o d[M(z,y)dx + N(z,y)dy] = (N — M,)dz A dy.
o df(z,y,2)dr + g(x,y,z) dy + h(z,y,z) dz]

= (hy —g.)dy N dz + (f. — hy)dz A dz+ (g, — fy) dz A dy.

Note that if F' = (f, g, h) is a vector field then

VX F=(hy =gz fo— o gu — fy)

dlf(z,y,2z)dy A\ dz + g(z,y,2) dz A\ dx + h(z,y, z)dx A dy)

= (fs + gy + hz)dz A dy A dz. Note that if ' = (f, g,h) is a vector field
then V- F = f, + gy + h..

If F = (f g,h) is a vector field on R?, w = f(z,y,2)dr + g(x,y,2) dy +
h(z,y, z) dz is the corresponding 1-form, and p: R — R3 is a smooth func-
tion, then for all u € R we have w,(,)(Dp(u)é1) = F(p(u)) - Dp(u).

If F = (f g,h)is a vector field on R3, w = f(x,y,2)dy A dz

+ g(z,y,2)dz A dx + h(z,y,z)dz A dy is the corresponding 2-form, and
p: R? — R3 is a smooth function, then for all u € R? we have
Wo(u)(Dp(u)ér, Dp(u)éz) = F(p(u)) - [Dp(u)ér x Dp(u)és].

Ifw = f(x,y, 2)deAdyAdz and p: R® — R3 is a smooth function, then for all
u € R¥ we have wy) (Dp(u)ér, Dp(u)és, Dp(u)és) = £(p(u)) det[Dp(w)].
Stokes’ Theorem Suppose X C R™ is a closed and bounded k-dimensional
manifold, k£ > 1, with orientation r: Upex Q,X — {+1,—1}. Suppose X
is the set of boundary points of X, and #: Upeax Q2,0X — {+1, —1} is the
induced boundary orientation. Suppose w is a (k — 1)-form on R"™, and dw
is its exterior derivative (a k-form on R™). Then

/ dw = / w.
X,k oOX Rk

Study Questions:

(1)
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(2) Suppose f(z,y) = 32% + Zy? — 5zy and C* is the oriented line segment
from (1,3) to (5,2). Show that fc* df = f(5,2) — f(1,3) by calculating
both sides.

(3) Suppose w = —y dz+x dy is a 1-form on R? corresponding to the vector field
F = (—y,2,0). Suppose S = {(x,y,2) € R® | 2 > 0,22 +y*+ 2% = 1} is the
upper half of a unit sphere. Let C = dS be the unit circle in the xy plane.
Suppose §* is oriented such that the “positive side” of the surface is the
one away from the origin. Let C* have the induced boundary orientation.
Show that fs* dw = fc* w by calculating both sides.

(4) Suppose w = xdy Adz +ydz Adx + zdx A dy is a 2-form on R3. Suppose
R = {(z,y,2) € R® | 22 + y? + 22 < 1} be the unit sphere together with
its interior. Let S = OR = {(z,y,2) € R3 | 22 + 32 + 22 = 1} be the unit
sphere. Suppose R* has the standard orientation of R? and S* has the
induced boundary orientation. Show that fR dw = |, g~ w by calculating
both sides.

(5) Suppose S = {(z,y,2) € R® | z+y+2 = 1} and define the parameterization
p(u,v) = (1—u—wv,u,v), where (u,v) € R%. Let h = %(1, 1,1), and define
the orientation kp(e1,e2) =0-e; X ey, for all p € S and all (e1,e2) € Q,S.
Show that the parameterization p is consistent with the orientation x on S.

(6) Suppose S = {(z,y,2) e R® |z +y+2=1,2> 0} and C = {(z,y,0) €
R3 |  +y = 1}. Suppose S is equipped with the orientation x defined in
problem (5). Show that u(p) = %(1, 1,—2) is the outward unit normal to
C. If & is the induced boundary orientation on C, and e; = %<71, 1,0) is

an orthonormal basis of T,,C, then compute %, (e1).

Solutions to Some Problems:

Problem 3. First we will compute fc* w, and as always we need a parameteri-
zation of C* consistent with the orientation. C is the unit circle in the zy plane, so
as discussed in class we parameterize it as follows:

p(0) = (cos 6, sin 6, 0), 6 € 10, 27].

From this we calculate
Dp(0) = (—sind, cos b, 0).

Recall the ordered basis (e,, €4, €9) associated to each point in the coordinate do-
main of spherical coordinates. (e4,ey) is a positively oriented orthonormal basis of
the tangent space of the unit sphere, u(p) = e4 is the outward unit normal to C
and ey is a basis vector of T},C. Hence p, which parameterizes C via the coordinate
0 is consistent with the induced boundary orientation of C*.

The 1-form w = —y dx+x dy+0dz corresponds to the vector field F' = (—y, x,0).
By one of our important facts,

w0y (Dp(0)ér) = F(p(0)) - Dp(0) = (—sinf, cosd,0) - (—sinb,cos 0, 0)
= sin? 6 + cos? 0 = 1.

Now by the definition of the integral of a 1-form over an oriented 1-dimensional
manifold we have

2 27
/ w= / wy(o)(Dp(0)ér) do = / 1d0 = 2.
* 0

0



5

Now we must compute |, g+ dw; we begin with a parameterization of §*. Define
p(,0) = (sin¢gcos,sin@siné, cos @) for (¢,0) € U = (0,7/2) x (0,27). p(U) is
almost all of S. As we proved in class this parameterization is consistent with the
orientation of §*. Computing we find

cospcos —sin¢gsin
Dp(¢,0) = | cos¢sing  sin¢cosf
—sin¢ 0
The 2-form dw = d(—ydx + xdy) = —dy A de + dz A dy = 2dz A dy =

0dyA dz+0dzA dz+2dx A dy corresponds to the vector field F'(z,y, z) = (0,0, 2).
By one of our important facts we have

(dw)p((b,@) (DP(¢, 0)é17 DP(¢, 0)é2) - F(p(¢, 0)) : Dp(¢’ e)él X D,D((,ZS, o)éQ

0 0 2
=det | cos¢cosf cospsinh —sing
—singsin€ sin¢cosf 0
= 2sin ¢ cos ¢.

Thus by the definition of the integral of a 2-form over an oriented 2-dimensional
manifold we have

[ o= [ (@)y60/(Dpl0,0)e1. Dol 0)s0) ot

27 pm/2 b=n/2
:/ / 2sin ¢ cos ¢ dep df = 2msin? ¢ = 27.
0 0 ¢=0

Thus we found that fc* w = 27 and fs* dw = 27, so we have verified that fs* dw =
Joo v

Problem 4. We begin with the calculation of f g W Define the parameterization
p(¢,0) = (sinpcosh,sinpsinb,cos ) for (¢,0) € U = (0,7) x (0,27). p(U) is
almost all of S. Recall the ordered basis (e,, €4, €9) associated to each point in the
coordinate domain of spherical coordinates is positively oriented with respect to
the standard orientation of R®. u(p) = e, is the unit outward normal to S. Hence
(e4,€g) is a positively oriented orthonormal basis of the tangent space of the unit
sphere with respect to the induced boundary orientation. As we have seen in class
this implies that the parameterization p is consistent with the orientation of S*.

The 2-form w = xdy A dz + ydz A de + zdzx A dy is associated with the vector
field F(x,y, z) = (x,y, z). By one of our important facts we have

Wp(d),@) (Dp(¢7 G)éla Dp(¢7 9)é2) = F(p(¢7 9)) : Dp(¢7 e)él X DP(¢% 9)é2
singcosf singsinfd  cos¢
=det | cos¢pcosf cos¢psinf —sing
—singsinf sin¢cosb 0

= sin ¢.
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(Obviously there was a bit of calculation skipped here.) Thus by the definition of
the integral of a 2-form over an oriented 2-dimensional manifold we have

/ w= /U Wp(.0) (Dp(,0)61, Dp(6, 0)82) dop db

2m s d=m
= / / sin ¢ dop df = —2mcos ¢ =A4r.
0 0 $=0

One of our important facts allows us to compute dw = 3dx A dy A dz, since
div F = 3. Thus

/ dw:/ 3dx A dy A dz = 3(57) = 4,

since the volume of the unit sphere R is %7‘(. Thus we have computed both integrals
and obtained the same answer.
Problem 5. To verify consistency we must check the condition

Kp(u,v) (ela 62) det[(eh eQ)TDp(u7 U)] >0
for all (e1,e2) € Q,)S. First of all
I(1l—u—v) O(l—u—v)

du v -1 -1
Dp(u,v) = % %Z) =1 0
o) Olv) 0 1
ou ov
Suppose e; = (ay,b1,c1) and ez = (az, ba, c2). Then
a; az r -1 -1
det[(e1, e2)" Dp(u,v)] = det by bo 1 0
C1 C2 0 1
ap b1 o -
= det < b ) 1 0
az by c2 0 1

—ay + bl —ay + C1
= det
© (—ag + b2 —as + CQ)

= (—al + bl)(—ag + 02) — (—ag + bg)(—al + Cl)
= agsC1 — aic2 + albg — a2b1 + b162 - bQCl.

On the other hand
1 1 1

. V3 V3 VB
Kpup)(€1,€2) =N -y xey=det [ a; by ¢

az by e
= %[5102 —bacy — (arca — ager) + arby — aghy]
Thus
Kp(u,) (€1, €2) det[(e1,e2)" Dp(u,v)] = %[blcg—bgcl—i—agcl—a102+a1b2—a2b1]2 >0

as we needed to show.
Problem 6. To check that u(p) is the outward unit normal first note that

n-u(p) = %(1, 1,1)- %(1, 1,-2) = \/%(1(1) +1(1) +1(=2)) = 0, so u(p) € T,,S.

Two points on the boundary line C are (1,0,0) and (0,1,0), so a tangent vector
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to this line is (0,1,0) — (1,0,0) = (~1,1,0). Also u(p) - (—1,1,0) = 1(1,1,1) -
(—1,1,0) = 0, so u(p) is perpendicular to T,,C. Also since S has z > 0 whereas the
z-component of u(p) is negative, we have that u(p) points “outward” from S.

To compute %,(e1) we use the definition of the induced boundary orientation:

Fp(e1) = rp(u(p),e1) =n-u(p) x e; =nxu(p)-e

= 5(1L11) x =(1,1,-2) -e1 = 4(=3,3,0) - e,
= %<_17 170> t €1
This dot product is either +1 or —1 according as e; = % (—1,1,0). So the positive

direction on C is in the direction of %(—1, 1,0).



