SUMMARY OF SOME OF THE MATH 550 MATERIAL CONCERNING EXAM 3

Some Definitions:

- A 0-dimensional manifold $\mathcal{P} \subset \mathbb{R}^n$ is a finite collection of points from \mathbb{R}^n .
- A 1-dimensional manifold $\mathcal{C} \subset \mathbb{R}^n$ is called a "curve". It is required that for every $p \in \mathcal{C}$ there is an open ball $B(p,\epsilon) \subset \mathbb{R}^n$, centered at p of radius $\epsilon > 0$, and an open interval (-a, a) (or a half-open interval (-a, 0]), and a smooth local parameterization f mapping (-a, a) (or (-a, 0]) into \mathbb{R}^n , with range $\mathcal{C} \cap B(p, \epsilon)$, such that f(0) = p and $f'(0) \neq \mathbf{0}$.
- A 2-dimensional manifold $\mathcal{S} \subset \mathbb{R}^n$ is called a "surface". It is required that for every $p \in \mathcal{S}$ there is an open ball $B(p, \epsilon) \subset \mathbb{R}^n$, and an open square $(-a, a) \times (-a, a)$ (or a rectangle $(-a, 0] \times (-a, a)$), and a smooth local parameterization f mapping $(-a, a) \times (-a, a)$ (or $(-a, 0] \times (-a, a)$) onto $\mathcal{S} \cap B(p, \epsilon)$ such that f(0, 0) = p and $Df(0, 0) \colon \mathbb{R}^2 \to \mathbb{R}^n$ is 1-1.
- A 3-dimensional manifold $\mathcal{R} \subset \mathbb{R}^n$ is called a "region". It is required that for every $p \in \mathcal{S}$ there is an open ball $B(p,\epsilon) \subset \mathbb{R}^n$, and an open cube $(-a,a) \times (-a,a) \times (-a,a)$ (or a box $(-a,0] \times (-a,a) \times (-a,a)$), and a smooth local parameterization f mapping $(-a,a) \times (-a,a) \times (-a,a)$ (or $(-a,0] \times (-a,a) \times (-a,a)$) onto $\mathcal{S} \cap B(p,\epsilon)$ such that f(0,0,0) = p and $Df(0,0,0) \colon \mathbb{R}^3 \to \mathbb{R}^n$ is 1-1.
- p is called an *interior* point of \mathcal{X} if the domain of the local parameterization f is an open set. Otherwise p is called a *boundary* point of \mathcal{X} .
- If \mathcal{X} is a k-dimensional manifold, $k \geq 1$, and $p \in \mathcal{X}$ then $T_p \mathcal{X} = \{(p, \mathbf{v}) \mid \mathbf{v} = Df(\mathbf{0})\mathbf{u} \in \mathbb{R}^n, \mathbf{u} \in \mathbb{R}^k\}$, where f is a local parameterization at p. If k = 0 then $T_p \mathcal{P} = \{(p, \mathbf{0}) \mid \mathbf{0} \in \mathbb{R}^n\}$.
- Remark: $(p, \mathbf{v}) \in T_p \mathcal{X}$ is interpreted as the vector $\mathbf{v} \in \mathbb{R}^n$ tangent to \mathcal{X} at the point $p \in \mathcal{X}$. $T_p \mathcal{X}$ is a vector space with the operations $(p, \mathbf{v}) + (p, \mathbf{w}) = (p, \mathbf{v} + \mathbf{w}), (p, \mathbf{v})\alpha = (p, \mathbf{v}\alpha)$, and zero vector $(p, \mathbf{0})$. It is equipped with a dot product inherited from \mathbb{R}^n : $(p, \mathbf{v}) \cdot (p, \mathbf{w}) = \mathbf{v}^T \mathbf{w}$. We will often abuse notation slightly by saying that $\mathbf{v} \in T_p \mathcal{X}$ when in fact $(p, \mathbf{v}) \in T_p \mathcal{X}$.
- If \mathcal{X} is a k-dimensional manifold, $k \geq 0$, and $p \in \mathcal{X}$, then define $\Omega_p \mathcal{X} = \{(p, (\mathbf{e}_1, \dots, \mathbf{e}_k)) \mid (\mathbf{e}_1, \dots, \mathbf{e}_k) \text{ is an ordered orthonormal basis of } T_p \mathcal{X}\}$. If k = 0 then $\Omega_p \mathcal{X} = \{(p, ())\}$ is a set with one element. As with the tangent space we will often abuse notation by writing: $(\mathbf{e}_1, \dots, \mathbf{e}_k) \in \Omega_p \mathcal{X}$ instead of $(p, (\mathbf{e}_1, \dots, \mathbf{e}_k)) \in \Omega_p \mathcal{X}$.
- If \mathcal{X} is a k-dimensional manifold, $k \geq 0$, and $p \in \mathcal{X}$, then an orientation of $T_p\mathcal{X}$ is a mapping $\kappa_p \colon \Omega_p\mathcal{X} \to \{+1, -1\}$ such that whenever $(\mathbf{e}_1, \ldots, \mathbf{e}_k) \in \Omega_p\mathcal{X}$, and A is a $k \times k$ matrix such that $(\mathbf{e}_1, \ldots, \mathbf{e}_k)A \in \Omega_p\mathcal{X}$, then $\kappa_p((\mathbf{e}_1, \ldots, \mathbf{e}_k)A) = \kappa_p(\mathbf{e}_1, \ldots, \mathbf{e}_k) \det A$ (this condition is vacuous when k = 0).
- If \mathcal{X} is a k-dimensional manifold, $k \geq 0$, then an orientation of \mathcal{X} is a mapping $\kappa \colon \bigcup_{p \in \mathcal{X}} \Omega_p \mathcal{X} \to \{+1, -1\}$ such that $\kappa|_{\Omega_p \mathcal{X}}$ is an orientation of $T_p \mathcal{X}$ for each $p \in \mathcal{X}$, and whenever $\mathbf{E}_1, \ldots, \mathbf{E}_k$ are continuous vector fields

on the connected open set $U \subset \mathcal{X}$ such that $(\mathbf{E}_1(p), \ldots, \mathbf{E}_k(p)) \in \Omega_p \mathcal{X}$ for all $p \in U$ then $\kappa(p, (\mathbf{E}_1(p), \ldots, \mathbf{E}_k(p)))$ is a constant function of $p \in U$. If k = 0 and $\mathcal{X} = \mathcal{P}$ then $\cup_{p \in \mathcal{P}} \Omega_p \mathcal{P}$ is in one-to-one correspondence with \mathcal{P} , so an orientation of \mathcal{P} is any mapping $\kappa \colon \mathcal{P} \to \{+1, -1\}$.

• Suppose \mathcal{X} is a k-dimensional manifold, $k \geq 1$, and $\kappa: \bigcup_{p \in \mathcal{X}} \Omega_p \mathcal{X} \rightarrow \{+1, -1\}$ is an orientation of \mathcal{X} . Suppose U is an open subset of \mathbb{R}^k and $f: U \to \mathcal{X}$ is a parameterization of $f(U) \subset \mathcal{X}$. Suppose that for all $q \in U$ and for all $(\mathbf{e}_1, \ldots, \mathbf{e}_k) \in \Omega_{f(q)} \mathcal{X}$ we have that

$$\kappa_{f(q)}(\mathbf{e}_1,\ldots,\mathbf{e}_k) \det[(\mathbf{e}_1,\ldots,\mathbf{e}_k)^T Df(q)] > 0.$$

Then we say that the parameterization f is consistent with the orientation κ .

- Suppose \mathcal{X} is a k-dimensional manifold, $k \geq 1$, and $\partial \mathcal{X}$ is the set of boundary points of \mathcal{X} , which is a (k-1)-dimensional manifold. If $p \in \partial \mathcal{X}$ let f denote a local parameterization of \mathcal{X} at p. Then define $\mathbf{u}(p) \in T_p \mathcal{X}$ to be the unique unit vector such that $\mathbf{u}(p) \cdot \mathbf{v} = 0$ for all $\mathbf{v} \in T_p \partial \mathcal{X}$ and $\mathbf{u}(p) \cdot Df(\mathbf{0})\hat{\mathbf{e}}_1 > 0$. $\mathbf{u}(p)$ is called the *outward unit normal to* $\partial \mathcal{X}$ at p.
- Suppose \mathcal{X} is a k-dimensional manifold, $k \geq 1$, and $\partial \mathcal{X}$ is the set of boundary points of \mathcal{X} . Suppose $\kappa \colon \bigcup_{p \in \mathcal{X}} \Omega_p \mathcal{X} \to \{+1, -1\}$ is an orientation of \mathcal{X} . Then the boundary orientation on $\partial \mathcal{X}$ it induced by κ is the mapping $\tilde{\kappa} \colon \bigcup_{p \in \partial \mathcal{X}} \Omega_p \partial \mathcal{X} \to \{+1, -1\}$ defined by

$$\tilde{\kappa}_p(\mathbf{e}_1,\ldots,\mathbf{e}_{k-1}) = \kappa_p(\mathbf{u}(p),\mathbf{e}_1,\ldots,\mathbf{e}_{k-1})$$

for all $p \in \partial \mathcal{X}$ and $(\mathbf{e}_1, \ldots, \mathbf{e}_{k-1}) \in \Omega_p \partial \mathcal{X}$, where $\mathbf{u}(p)$ is the outward unit normal to $\partial \mathcal{X}$ at p.

- A 0-form on \mathbb{R}^n is an ordinary smooth real-valued function $f: U \to \mathbb{R}$, defined on an open subset $U \subset \mathbb{R}^n$.
- If $k \geq 1$ and f_1, \ldots, f_k are 0-forms defined on $U \subset \mathbb{R}^n$ then define the basic k-form $df_1 \wedge df_2 \wedge \cdots \wedge df_k$ to be the following mapping:

$$(df_1 \wedge df_2 \wedge \dots \wedge df_k)_x(\mathbf{v}_1, \dots, \mathbf{v}_k) = \det \begin{pmatrix} Df_1(x)\mathbf{v}_1 & \dots & Df_1(x)\mathbf{v}_k \\ Df_2(x)\mathbf{v}_1 & \dots & Df_2(x)\mathbf{v}_k \\ \vdots & & \vdots \\ Df_k(x)\mathbf{v}_1 & \dots & Df_k(x)\mathbf{v}_k \end{pmatrix},$$

where $x \in U$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{R}^n$.

• If $k \geq 1$ and g_1, \ldots, g_m are 0-forms defined on $U \subset \mathbb{R}^n$, and $\omega^1, \ldots, \omega^m$ are basic k-forms on U, then $g_1 \omega^1 + \cdots + g_m \omega^m$ is called a k-form on U. It is a mapping of the arguments $x \in U$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{R}^n$ such that

$$(g_1\omega^1 + \dots + g_m\omega^m)_x(\mathbf{v}_1, \dots, \mathbf{v}_k) = g_1(x)\omega_x^1(\mathbf{v}_1, \dots, \mathbf{v}_k) + \dots + g_m(x)\omega_x^m(\mathbf{v}_1, \dots, \mathbf{v}_k).$$

- If \mathcal{P} is a 0-dimensional manifold in \mathbb{R}^n , $\kappa \colon \mathcal{P} \to \{+1, -1\}$ is an orientation of \mathcal{P} , and f is a 0-form defined on the open set $U \subset \mathbb{R}^n$, where $\mathcal{P} \subset U$, then define $\int_{\mathcal{P},\kappa} f = \sum_{p \in \mathcal{P}} f(p)\kappa(p)$.
- Suppose \mathcal{X} is a k-dimensional manifold, $k \geq 1$, and $\kappa: \bigcup_{p \in \mathcal{X}} \Omega_p \mathcal{X} \to \{+1, -1\}$ is an orientation of \mathcal{X} . Suppose U is an open subset of \mathbb{R}^k and $\rho: U \to \mathcal{X}$ is a parameterization of $\rho(U) \subset \mathcal{X}$ which is consistent with the orientation κ . Suppose $\omega = g_1 \omega^1 + \cdots + g_m \omega^m$ is a k-form on an open

subset $V \subset \mathbb{R}^n$ where $\rho(U) \subset V$. Let $u = (u_1, \ldots, u_k)$ be the standard Cartesian coordinates on \mathbb{R}^k . Then define

$$\int_{\rho(U),\kappa} \omega = \int_{u \in U} \omega_{\rho(u)} (D\rho(u)\hat{\mathbf{e}}_1, \dots, D\rho(u)\hat{\mathbf{e}}_k) \, du_1 \dots \, du_k.$$

- If f is a 0-form on \mathbb{R}^n and $x = (x_1, \ldots, x_n)$ are the standard Cartesian coordinates on \mathbb{R}^n then define df to be the 1-form $df = \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i$. This agrees with our earlier definition of basic 1-forms. In fact, if $f(x) = x_i$ then $df_x(\mathbf{v}) = \mathbf{v}_i$ for all $x \in \mathbb{R}^n$; hence we write $df = dx_i$, omitting any reference to x.
- If ω = Σ^m_{j=1} g_jω^j is a k-form on U ⊂ ℝⁿ, where the basic k-forms ω^j are wedge products of various dx_i's, i = 1,...,n, (and hence are independent of x) then define the (k + 1)-form dω by the rule dω = Σ^m_{i=1} dg_j ∧ ω^j.

Some Important Facts:

- If ω is a k-form and η is an l-form then $\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega$ is a (k+l)-form.
- If ω , η , and ζ are differential forms then $(\omega \wedge \eta) \wedge \zeta = \omega \wedge (\eta \wedge \zeta)$.
- If ω is a k-form, η and ζ are *l*-forms, and *f* and *g* are 0-forms, then $\omega \wedge (f\eta + g\zeta) = f\omega \wedge \eta + g\omega \wedge \zeta$.
- $d[M(x,y) dx + N(x,y) dy] = (N_x M_y) dx \wedge dy.$
- d[f(x, y, z) dx + g(x, y, z) dy + h(x, y, z) dz]= $(h_y - g_z) dy \wedge dz + (f_z - h_x) dz \wedge dx + (g_x - f_y) dx \wedge dy.$ Note that if $F = \langle f, g, h \rangle$ is a vector field then $\nabla \times F = \langle h_y - g_z, f_z - h_x, g_x - f_y \rangle.$
- $d[f(x, y, z) dy \wedge dz + g(x, y, z) dz \wedge dx + h(x, y, z) dx \wedge dy]$ = $(f_x + g_y + h_z) dx \wedge dy \wedge dz$. Note that if $F = \langle f, g, h \rangle$ is a vector field then $\nabla \cdot F = f_x + g_y + h_z$.
- If $F = \langle f, g, h \rangle$ is a vector field on \mathbb{R}^3 , $\omega = f(x, y, z) dx + g(x, y, z) dy + h(x, y, z) dz$ is the corresponding 1-form, and $\rho \colon \mathbb{R} \to \mathbb{R}^3$ is a smooth function, then for all $u \in \mathbb{R}$ we have $\omega_{\rho(u)}(D\rho(u)\hat{\mathbf{e}}_1) = F(\rho(u)) \cdot D\rho(u)$.
- If $F = \langle f, g, h \rangle$ is a vector field on \mathbb{R}^3 , $\omega = f(x, y, z) dy \wedge dz$ + $g(x, y, z) dz \wedge dx + h(x, y, z) dx \wedge dy$ is the corresponding 2-form, and $\rho \colon \mathbb{R}^2 \to \mathbb{R}^3$ is a smooth function, then for all $u \in \mathbb{R}^2$ we have $\omega_{\rho(u)}(D\rho(u)\hat{\mathbf{e}}_1, D\rho(u)\hat{\mathbf{e}}_2) = F(\rho(u)) \cdot [D\rho(u)\hat{\mathbf{e}}_1 \times D\rho(u)\hat{\mathbf{e}}_2].$
- If $\omega = f(x, y, z) dx \wedge dy \wedge dz$ and $\rho \colon \mathbb{R}^3 \to \mathbb{R}^3$ is a smooth function, then for all $u \in \mathbb{R}^3$ we have $\omega_{\rho(u)}(D\rho(u)\hat{\mathbf{e}}_1, D\rho(u)\hat{\mathbf{e}}_2, D\rho(u)\hat{\mathbf{e}}_3) = f(\rho(u)) \det[D\rho(u)].$
- Stokes' Theorem Suppose $\mathcal{X} \subset \mathbb{R}^n$ is a closed and bounded k-dimensional manifold, $k \geq 1$, with orientation $\kappa \colon \bigcup_{p \in \mathcal{X}} \Omega_p \mathcal{X} \to \{+1, -1\}$. Suppose $\partial \mathcal{X}$ is the set of boundary points of \mathcal{X} , and $\tilde{\kappa} \colon \bigcup_{p \in \partial \mathcal{X}} \Omega_p \partial \mathcal{X} \to \{+1, -1\}$ is the induced boundary orientation. Suppose ω is a (k-1)-form on \mathbb{R}^n , and $d\omega$ is its exterior derivative (a k-form on \mathbb{R}^n). Then

$$\int_{\mathcal{X},\kappa} d\omega = \int_{\partial \mathcal{X},\tilde{\kappa}} \omega$$

Study Questions:

(1) page 519, number 2, 3, 5.

- (2) Suppose $f(x,y) = \frac{3}{2}x^2 + \frac{7}{2}y^2 5xy$ and \mathcal{C}^* is the oriented line segment from (1,3) to (5,2). Show that $\int_{\mathcal{C}^*} df = f(5,2) f(1,3)$ by calculating both sides.
- (3) Suppose $\omega = -y \, dx + x \, dy$ is a 1-form on \mathbb{R}^3 corresponding to the vector field $F = \langle -y, x, 0 \rangle$. Suppose $\mathcal{S} = \{(x, y, z) \in \mathbb{R}^3 \mid z \ge 0, x^2 + y^2 + z^2 = 1\}$ is the upper half of a unit sphere. Let $\mathcal{C} = \partial \mathcal{S}$ be the unit circle in the xy plane. Suppose \mathcal{S}^* is oriented such that the "positive side" of the surface is the one away from the origin. Let \mathcal{C}^* have the induced boundary orientation. Show that $\int_{\mathcal{S}^*} d\omega = \int_{\mathcal{C}^*} \omega$ by calculating both sides.
- (4) Suppose $\omega = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$ is a 2-form on \mathbb{R}^3 . Suppose $\mathcal{R} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \leq 1\}$ be the unit sphere together with its interior. Let $\mathcal{S} = \partial \mathcal{R} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ be the unit sphere. Suppose \mathcal{R}^* has the standard orientation of \mathbb{R}^3 and \mathcal{S}^* has the induced boundary orientation. Show that $\int_{\mathcal{R}^*} d\omega = \int_{\mathcal{S}^*} \omega$ by calculating both sides.
- (5) Suppose $S = \{(x, y, z) \in \mathbb{R}^3 \mid x+y+z=1\}$ and define the parameterization $\rho(u, v) = \langle 1-u-v, u, v \rangle$, where $\langle u, v \rangle \in \mathbb{R}^2$. Let $\hat{\mathbf{n}} = \frac{1}{\sqrt{3}} \langle 1, 1, 1 \rangle$, and define the orientation $\kappa_p(\mathbf{e}_1, \mathbf{e}_2) = \hat{\mathbf{n}} \cdot \mathbf{e}_1 \times \mathbf{e}_2$, for all $p \in S$ and all $(\mathbf{e}_1, \mathbf{e}_2) \in \Omega_p S$. Show that the parameterization ρ is consistent with the orientation κ on S.
- (6) Suppose $S = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1, z \ge 0\}$ and $C = \{(x, y, 0) \in \mathbb{R}^3 \mid x + y = 1\}$. Suppose S is equipped with the orientation κ defined in problem (5). Show that $\mathbf{u}(p) = \frac{1}{\sqrt{6}} \langle 1, 1, -2 \rangle$ is the outward unit normal to C. If $\tilde{\kappa}$ is the induced boundary orientation on C, and $\mathbf{e}_1 = \frac{1}{\sqrt{2}} \langle -1, 1, 0 \rangle$ is an orthonormal basis of $T_p C$, then compute $\tilde{\kappa}_p(\mathbf{e}_1)$.

Solutions to Some Problems:

Problem 3. First we will compute $\int_{\mathcal{C}^*} \omega$, and as always we need a parameterization of \mathcal{C}^* consistent with the orientation. \mathcal{C} is the unit circle in the xy plane, so as discussed in class we parameterize it as follows:

$$\rho(\theta) = \langle \cos \theta, \sin \theta, 0 \rangle, \qquad \theta \in [0, 2\pi].$$

From this we calculate

4

$$D\rho(\theta) = \langle -\sin\theta, \cos\theta, 0 \rangle$$

Recall the ordered basis $(\mathbf{e}_{\varrho}, \mathbf{e}_{\phi}, \mathbf{e}_{\theta})$ associated to each point in the coordinate domain of spherical coordinates. $(\mathbf{e}_{\phi}, \mathbf{e}_{\theta})$ is a positively oriented orthonormal basis of the tangent space of the unit sphere, $\mathbf{u}(p) = \mathbf{e}_{\phi}$ is the outward unit normal to \mathcal{C} and \mathbf{e}_{θ} is a basis vector of $T_p \mathcal{C}$. Hence ρ , which parameterizes \mathcal{C} via the coordinate θ is consistent with the induced boundary orientation of \mathcal{C}^* .

The 1-form $\omega = -y \, dx + x \, dy + 0 \, dz$ corresponds to the vector field $F = \langle -y, x, 0 \rangle$. By one of our important facts,

$$\omega_{\rho(\theta)}(D\rho(\theta)\hat{\mathbf{e}}_1) = F(\rho(\theta)) \cdot D\rho(\theta) = \langle -\sin\theta, \cos\theta, 0 \rangle \cdot \langle -\sin\theta, \cos\theta, 0 \rangle$$
$$= \sin^2\theta + \cos^2\theta = 1.$$

Now by the definition of the integral of a 1-form over an oriented 1-dimensional manifold we have

$$\int_{\mathcal{C}^*} \omega = \int_0^{2\pi} \omega_{\rho(\theta)} (D\rho(\theta)\hat{\mathbf{e}}_1) \, d\theta = \int_0^{2\pi} 1 \, d\theta = 2\pi.$$

Now we must compute $\int_{\mathcal{S}^*} d\omega$; we begin with a parameterization of \mathcal{S}^* . Define $\rho(\phi, \theta) = \langle \sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi \rangle$ for $(\phi, \theta) \in U = (0, \pi/2) \times (0, 2\pi)$. $\rho(U)$ is almost all of \mathcal{S} . As we proved in class this parameterization is consistent with the orientation of \mathcal{S}^* . Computing we find

$$D\rho(\phi,\theta) = \begin{pmatrix} \cos\phi\cos\theta & -\sin\phi\sin\theta\\ \cos\phi\sin\theta & \sin\phi\cos\theta\\ -\sin\phi & 0 \end{pmatrix}.$$

The 2-form $d\omega = d(-y \, dx + x \, dy) = -dy \wedge dx + dx \wedge dy = 2 \, dx \wedge dy = 0 \, dy \wedge dz + 0 \, dz \wedge dx + 2 \, dx \wedge dy$ corresponds to the vector field $F(x, y, z) = \langle 0, 0, 2 \rangle$. By one of our important facts we have

$$\begin{aligned} (d\omega)_{\rho(\phi,\theta)} (D\rho(\phi,\theta)\hat{\mathbf{e}}_1, D\rho(\phi,\theta)\hat{\mathbf{e}}_2) &= F(\rho(\phi,\theta)) \cdot D\rho(\phi,\theta)\hat{\mathbf{e}}_1 \times D\rho(\phi,\theta)\hat{\mathbf{e}}_2 \\ &= \det \begin{pmatrix} 0 & 0 & 2 \\ \cos\phi\cos\theta & \cos\phi\sin\theta & -\sin\phi \\ -\sin\phi\sin\theta & \sin\phi\cos\theta & 0 \end{pmatrix} \\ &= 2\sin\phi\cos\phi. \end{aligned}$$

Thus by the definition of the integral of a 2-form over an oriented 2-dimensional manifold we have

$$\int_{\mathcal{S}^*} d\omega = \int_U (d\omega)_{\rho(\phi,\theta)} (D\rho(\phi,\theta)\hat{\mathbf{e}}_1, D\rho(\phi,\theta)\hat{\mathbf{e}}_2) \, d\phi \, d\theta$$
$$= \int_0^{2\pi} \int_0^{\pi/2} 2\sin\phi\cos\phi \, d\phi \, d\theta = 2\pi \sin^2\phi \Big|_{\phi=0}^{\phi=\pi/2} = 2\pi.$$

Thus we found that $\int_{\mathcal{C}^*} \omega = 2\pi$ and $\int_{\mathcal{S}^*} d\omega = 2\pi$, so we have verified that $\int_{\mathcal{S}^*} d\omega = \int_{\mathcal{C}^*} \omega$.

Problem 4. We begin with the calculation of $\int_{\mathcal{S}^*} \omega$. Define the parameterization $\rho(\phi, \theta) = \langle \sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi \rangle$ for $(\phi, \theta) \in U = (0, \pi) \times (0, 2\pi)$. $\rho(U)$ is almost all of \mathcal{S} . Recall the ordered basis $(\mathbf{e}_{\varrho}, \mathbf{e}_{\phi}, \mathbf{e}_{\theta})$ associated to each point in the coordinate domain of spherical coordinates is positively oriented with respect to the standard orientation of \mathbb{R}^3 . $\mathbf{u}(p) = \mathbf{e}_{\varrho}$ is the unit outward normal to \mathcal{S} . Hence $(\mathbf{e}_{\phi}, \mathbf{e}_{\theta})$ is a positively oriented orthonormal basis of the tangent space of the unit sphere with respect to the induced boundary orientation. As we have seen in class this implies that the parameterization ρ is consistent with the orientation of \mathcal{S}^* .

The 2-form $\omega = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$ is associated with the vector field $F(x, y, z) = \langle x, y, z \rangle$. By one of our important facts we have

$$\begin{split} \omega_{\rho(\phi,\theta)}(D\rho(\phi,\theta)\hat{\mathbf{e}}_1, D\rho(\phi,\theta)\hat{\mathbf{e}}_2) &= F(\rho(\phi,\theta)) \cdot D\rho(\phi,\theta)\hat{\mathbf{e}}_1 \times D\rho(\phi,\theta)\hat{\mathbf{e}}_2 \\ &= \det \begin{pmatrix} \sin\phi\cos\theta & \sin\phi\sin\theta & \cos\phi\\ \cos\phi\cos\theta & \cos\phi\sin\theta & -\sin\phi\\ -\sin\phi\sin\theta & \sin\phi\cos\theta & 0 \end{pmatrix} \\ &= \sin\phi. \end{split}$$

(Obviously there was a bit of calculation skipped here.) Thus by the definition of the integral of a 2-form over an oriented 2-dimensional manifold we have

$$\int_{\mathcal{S}^*} \omega = \int_U \omega_{\rho(\phi,\theta)} (D\rho(\phi,\theta)\hat{\mathbf{e}}_1, D\rho(\phi,\theta)\hat{\mathbf{e}}_2) \, d\phi \, d\theta$$
$$= \int_0^{2\pi} \int_0^{\pi} \sin\phi \, d\phi \, d\theta = -2\pi\cos\phi \Big|_{\phi=0}^{\phi=\pi} = 4\pi$$

One of our important facts allows us to compute $d\omega = 3 dx \wedge dy \wedge dz$, since div F = 3. Thus

$$\int_{\mathcal{R}^*} d\omega = \int_{\mathcal{R}^*} 3\,dx \wedge dy \wedge dz = 3(\frac{4}{3}\pi) = 4\pi,$$

since the volume of the unit sphere \mathcal{R} is $\frac{4}{3}\pi$. Thus we have computed both integrals and obtained the same answer.

Problem 5. To verify consistency we must check the condition

$$\kappa_{\rho(u,v)}(\mathbf{e}_1,\mathbf{e}_2)\det[(\mathbf{e}_1,\mathbf{e}_2)^T D\rho(u,v)] > 0$$

for all $(\mathbf{e}_1, \mathbf{e}_2) \in \Omega_{\rho(u,v)} \mathcal{S}$. First of all

$$D\rho(u,v) = \begin{pmatrix} \frac{\partial(1-u-v)}{\partial u} & \frac{\partial(1-u-v)}{\partial v} \\ \frac{\partial(u)}{\partial u} & \frac{\partial(u)}{\partial v} \\ \frac{\partial(v)}{\partial u} & \frac{\partial(v)}{\partial v} \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Suppose $\mathbf{e}_1 = \langle a_1, b_1, c_1 \rangle$ and $\mathbf{e}_2 = \langle a_2, b_2, c_2 \rangle$. Then

$$det[(\mathbf{e}_{1}, \mathbf{e}_{2})^{T} D\rho(u, v)] = det \begin{pmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \\ c_{1} & c_{2} \end{pmatrix}^{T} \begin{pmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$
$$= det \begin{pmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$
$$= det \begin{pmatrix} -a_{1} + b_{1} & -a_{1} + c_{1} \\ -a_{2} + b_{2} & -a_{2} + c_{2} \end{pmatrix}$$
$$= (-a_{1} + b_{1})(-a_{2} + c_{2}) - (-a_{2} + b_{2})(-a_{1} + c_{1})$$
$$= a_{2}c_{1} - a_{1}c_{2} + a_{1}b_{2} - a_{2}b_{1} + b_{1}c_{2} - b_{2}c_{1}.$$

On the other hand

$$\kappa_{\rho(u,v)}(\mathbf{e}_1, \mathbf{e}_2) = \hat{\mathbf{n}} \cdot \mathbf{e}_1 \times \mathbf{e}_2 = \det \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}$$
$$= \frac{1}{\sqrt{3}} [b_1 c_2 - b_2 c_1 - (a_1 c_2 - a_2 c_1) + a_1 b_2 - a_2 b_1]$$

Thus

 $\kappa_{\rho(u,v)}(\mathbf{e}_1, \mathbf{e}_2) \det[(\mathbf{e}_1, \mathbf{e}_2)^T D\rho(u, v)] = \frac{1}{\sqrt{3}} [b_1 c_2 - b_2 c_1 + a_2 c_1 - a_1 c_2 + a_1 b_2 - a_2 b_1]^2 > 0$ as we needed to show.

Problem 6. To check that $\mathbf{u}(p)$ is the outward unit normal first note that $\hat{\mathbf{n}} \cdot \mathbf{u}(p) = \frac{1}{\sqrt{3}} \langle 1, 1, 1 \rangle \cdot \frac{1}{\sqrt{6}} \langle 1, 1, -2 \rangle = \frac{1}{\sqrt{18}} (1(1) + 1(1) + 1(-2)) = 0$, so $\mathbf{u}(p) \in T_p \mathcal{S}$. Two points on the boundary line \mathcal{C} are $\langle 1, 0, 0 \rangle$ and $\langle 0, 1, 0 \rangle$, so a tangent vector

to this line is $\langle 0, 1, 0 \rangle - \langle 1, 0, 0 \rangle = \langle -1, 1, 0 \rangle$. Also $\mathbf{u}(p) \cdot \langle -1, 1, 0 \rangle = \frac{1}{\sqrt{3}} \langle 1, 1, 1 \rangle \cdot \langle -1, 1, 0 \rangle = 0$, so $\mathbf{u}(p)$ is perpendicular to $T_p \mathcal{C}$. Also since \mathcal{S} has $z \ge 0$ whereas the z-component of $\mathbf{u}(p)$ is negative, we have that $\mathbf{u}(p)$ points "outward" from \mathcal{S} .

To compute $\tilde{\kappa}_p(\mathbf{e}_1)$ we use the definition of the induced boundary orientation:

$$\begin{split} \tilde{\kappa}_p(\mathbf{e}_1) &= \kappa_p(\mathbf{u}(p), \mathbf{e}_1) = \hat{\mathbf{n}} \cdot \mathbf{u}(p) \times \mathbf{e}_1 = \hat{\mathbf{n}} \times \mathbf{u}(p) \cdot \mathbf{e}_1 \\ &= \frac{1}{\sqrt{3}} \langle 1, 1, 1 \rangle \times \frac{1}{\sqrt{6}} \langle 1, 1, -2 \rangle \cdot \mathbf{e}_1 = \frac{1}{\sqrt{18}} \langle -3, 3, 0 \rangle \cdot \mathbf{e}_1 \\ &= \frac{1}{\sqrt{2}} \langle -1, 1, 0 \rangle \cdot \mathbf{e}_1 \end{split}$$

This dot product is either +1 or -1 according as $\mathbf{e}_1 = \frac{\pm 1}{\sqrt{2}} \langle -1, 1, 0 \rangle$. So the positive direction on \mathcal{C} is in the direction of $\frac{1}{\sqrt{2}} \langle -1, 1, 0 \rangle$.