Analysis Seminar

Speaker:Lutz Weis (KIT, Karlsruher Institut für Technologie)Title:Random field solutions of stochastic evolution equationsDate:Friday April 7, 2015Time:2:05 pmRoom:LC 317R

Abstract

There are several approaches to stochastic evolution equations

$$dY(t) = AY(t) dt + B(Y(t)) dW(t)$$

where A generates an analytic semigroup on a space $L^{P}(U)$, B is a nonlinearity and W(t) is a Wiener process on $L^{P}(U)$. The functional analytic approach leads to $L^{P}(U)$ -valued soultion processes

$$Y(\cdot): [0,T] \times \Omega \to L^{P}(U),$$

whereas the classical PDE methods often consider "random field" solutions

$$y(\cdot, u): [0, T] \times \Omega \to \mathbb{C},$$

depending on the "state space" variable $u \in U$ and study the time regularity of the scalar paths $y(\cdot, u)$ instead.

In this talk we describe a modified functional analytic approach which leads to strong time regularity results for the scalar paths $y(\cdot, u)$ for $u \in U$, and compare them to the literature.