Analysis Seminar, Wednesday, April 15, 12:00, LC 312 A Local Fatou Theorem for Harmonic Functions on the Hyperbolic Ball Manfred Stoll

Abstract Let \mathbb{B} denote the unit ball in in \mathbb{R}^n , $n \geq 2$, with hyperbolic metric $ds^2 = 4(1 - |x|^2)^{-2}|dx|^2$. The Laplacian Δ_h with regard to the hyperbolic metric is given by

$$\Delta_h f(x) = (1 - |x|^2)^2 \Delta f(x) + 2(n - 2)(1 - |x|^2) \langle x, \nabla f(x) \rangle,$$

where Δf denotes the ordinary Laplacian of f and ∇f is the gradient of f. For $\zeta \in \partial \mathbb{B}$, $\alpha > 1$, $\Gamma_{\alpha}(\zeta)$ denotes the nontangential approach region

$$\Gamma_{\alpha}(\zeta) = \{ x \in \mathbb{B} : |x - \zeta| < \alpha(1 - |x|) \}$$

Also, for $E \subset \partial \mathbb{B}$ and $\alpha > 1$, let $\Omega(E, \alpha) = \bigcup_{\zeta \in E} \Gamma_{\alpha}(\zeta)$. In the seminar we will prove the following local Fatou theorem.

Theorem If $E \subset \partial \mathbb{B}$ is measurable, $\alpha > 1$, and U is a bounded function on $\Omega(E, \alpha)$ such that $\Delta_h U = 0$. Then

$$\lim_{\substack{x \to \zeta \\ x \in \Gamma_{\beta}(\zeta)}} U(x) \qquad exists$$

for a.e. $\zeta \in \partial E$ and $\beta > 1$.

This result was originally proved by I. Privalov in 1923 for harmonic functions in the unit disc. It was subsequently extended to harmonic functions in the upper half-space in \mathbb{R}^n by A. P. Calderon. The proof will make use of several classical results in analysis, including the Hahn-Banach Theorem, Riesz Representation Theorem, and the Ascoli-Arzela Theorem.