Speaker: Fred Stoll (USC)

Title: Littlewood–Paley Theory for Subharmonic Functions on the Unit Ball in \mathbb{R}^N

Abstract: The seminar talk will be a continuation of the lectures given in the fall concerning the Lusin area integral and Hardy type spaces of subharmonic of subharmonic functions. The talk will be self contained. Let *B* denote the unit ball in \mathbb{R}^N with boundary *S*. A C^2 function *f* is subharmonic on *B* if $\Delta f \geq 0$ where Δ is the usual Laplacian on \mathbb{R}^N . We introduce the function g_{λ}^* , $\lambda > 1$, defined for a nonnegative C^2 subharmonic function *f* by

$$g_{\lambda}^{*}(\zeta, f) = \left[\int_{B} (1 - |y|) \Delta f^{2}(y) K_{\lambda}(y, \zeta) dy \right]^{\frac{1}{2}},$$

where

$$K_{\lambda}(y,\zeta) = \frac{(1-|y|)^{(\lambda-1)(N-1)}}{|y-\zeta|^{\lambda(N-1)}}$$

For $\lambda = N/(N-1)$ one obtains the function g^* of Littlewood and Paley. In the talk we will prove that the inequality

$$\int_{S} \left[g_{\lambda}^{*}(\zeta, f) \right]^{p} d\sigma(\zeta) \leq C_{p} \sup_{0 < r < 1} \int_{S} f^{p}(r\zeta) d\sigma(\zeta)$$

holds for all $\lambda \geq N/(N-1)$ when $p \geq 2$, and for $\lambda > 3-p$ whenever $1 . Taking <math>\lambda = N/(N-1)$ proves that $||g^*(\cdot, f)||_p \leq C_p ||f||_p$ for all p > (2N-3)/(N-1).