Speaker: Steve Dilworth (USC)

Title: Banach spaces with nearly compact approximate midpoint sets

Abstract: Let α denote the Kuratowski measure of noncompactness. Given a functional f (on a Banach space X) of unit norm and $0 < \varepsilon < 1$, the slice $S(f, 1 - \varepsilon)$ consists of all x in the unit ball with $f(x) > 1 - \varepsilon$. Rolewicz (1987) proved that $\alpha(S(f, 1 - \varepsilon)) \to 0$ as $\varepsilon \to 0$ uniformly over f if and only if X is reflexive and 'asymptotically uniformly convex' (AUC). We consider the analogous question for the approximate midpoint sets, $\operatorname{lens}(x, 1 + \varepsilon)$, where x is a unit vector, consisting of all $y \in X$ such that $||x \pm y|| \leq 1 + \varepsilon$. We prove that $\alpha(\operatorname{lens}(x, 1 + \varepsilon)) \to 0$ as $\varepsilon \to 0$ uniformly over x if X (not necessarily reflexive) is AUC, although the converse is false, and find an asymptotic characterization of this property.