Speaker: Ralph Howard (USC)
Title: Lower bounds for averaged chord lengths of a closed curve.
Abstract: Let $c: \mathbf{R} / L \mathbf{Z} \rightarrow \mathbf{R} 2$ be a convex curve (the boundary of a convex set) with a unit speed parametrization (that is $\left\|c^{\prime}(t)\right\|=1$ for all t) and length L. If A is the area enclosed by c, then

$$
4 A \leq \int_{0}^{L}\|c(t)-c(t+L / 2)\| d t
$$

with equality if and only if c is a circle. The proof involves little more than elementary vector calculus. Some other lower bounds for the averaged chord length $\int_{0}^{L}\|c(t)-c(t+L / 2)\| d t$ will be given including some for curves in space. This is joint work with Mohammad Ghomi.

