Speaker: Fred Stoll (USC)

Title: Littlewood-Paley Theory for Subharmonic Functions on the Unit Ball in \mathbb{R}^N

Abstract: Let *B* denote the unit ball in \mathbb{R}^N with boundary *S*. For a non–negative C^2 subharmonic function *f* on *B* and $\zeta \in S$, the Lusin square function $S_{\alpha}(f,\zeta)$ is defined by

$$S_{\alpha}(f,\zeta) = \left[\int_{\Gamma_{\alpha}(\zeta)} (1-|x|)^{2-N} \Delta f^2(x) dx\right]^{\frac{1}{2}},$$

where for $\alpha > 1$, $\Gamma_{\alpha}(\zeta) = \{x \in B : |x - \zeta| < \alpha(1 - |x|)\}$ is the nontangential approach region at $\zeta \in S$, and Δ is the Laplacian in \mathbb{R}^N . In the seminar we will prove the following: **Theorem.** Let f be a nonnegative subharmonic function such that f^{p_o} is subharmonic for some $p_o > 0$. If

$$||f||_p^p = \sup_{0 < r < 1} \int_S f^p(r\zeta) d\sigma(\zeta) < \infty$$

for some $p > p_o$, then for every $\alpha > 1$,

$$\int_{S} S^{p}_{\alpha}(f,\zeta) d\sigma(\zeta) \leq A_{\alpha} \|f\|_{p}^{p}$$

for some constant A_{α} independent of f.

The above result includes the known results for harmonic or holomorphic functions in the Hardy H^p spaces, as well as for a system $F = (u_1, \ldots, u_N)$ of conjugate harmonic functions for which it is known that $|F|^p = (\sum u_j^2)^{p/2}$ is subharmonic for $p \ge (N-2)/(N-1), N \ge 3$. We will also consider the reverse inequality

$$||f||_p^p \le A_\alpha \int_S S^p_\alpha(f,\zeta) d\sigma(\zeta)$$

when p > 1.