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Abstract

We establish new results on the space BV of functions with bounded variation.
While it is well known that this space admits no unconditional basis, we show that it
is “almost” characterized by wavelet expansions in the following sense: if a function
f is in BV, its coefficient sequence in a BV normalized wavelet basis satisfies a class
of weak-`1 type estimates. These weak estimates can be employed to prove many
interesting results. We use them to identify the interpolation spaces between BV
and Sobolev or Besov spaces, and to derive new Gagliardo-Nirenberg-type inequal-
ities.

AMS subject classification: 42C40, 46B70,26B35 , 42B25.
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1 Background and main results

Many classical function spaces - such as the Sobolev, Hölder or Besov classes - can be
characterized by harmonic analysis methods through Fourier or wavelet bases, frames,
Littlewood-Paley decompositions, approximation by spline functions, etc. Such character-
izations are classically useful in various contexts such as operator theory or the theoretical
and numerical analysis of PDEs.

More recently, several results in data compression and statistical estimation have
shown that optimal algorithms for such applications can be derived from expansions into
unconditional bases for the function space that models the object to be compressed or
estimated (see [11] and [8]). By definition a sequence (en)n≥0 in a Banach space X is an
unconditional basis if and only if
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(i) It is a Schauder basis, i.e., for every x ∈ X there exists a unique sequence (xn)n≥0 such
that limN→+∞ ‖x−

∑N
n=0 xnen‖X = 0.

(ii) There exists a constant C such that for all finite sequences (xn)
N
n=0 and (yn)

N
n=0 such

that |yn| ≤ |xn|, one has ‖
∑

n ynen‖X ≤ C‖
∑

n xnen‖X .

In other words, the space X can be characterized by the size properties of the coef-
ficients describing its elements in terms of the basis (en)n≥0. This means that numerical
operations, such as thresholding, attenuating, or rounding-off the coefficients, are stable
in the X norm. The early development of wavelet bases (see [13]) is closely related to
the question of existence of an unconditional basis for the Hardy space H1. It is now well
established that wavelet bases are unconditional bases for most classical function spaces
that are known to possess one. On the other hand, certain spaces such as L1, C0, W

1(L1)
and BV are known to possess no unconditional basis of any type.

The space BV, consisting of functions with bounded variation, is of particular interest
for applications to data compression and statistical estimation. It is often chosen as a
model for piecewise smooth signals such as geometric images. Recall that, if Ω is an open
set of Rd, a function f ∈ L1(Ω) has bounded variation if and only if its distributional
gradient ∇f is a finite measure, i.e., if its total variation

|f |BV(Ω) := sup{
∫
Ω

f div(g) ; g ∈ C1
c (Ω,Rd), ‖g‖∞ ≤ 1}, (1.1)

is finite. Here, for g = (g1, . . . , gd), ‖g‖∞ := ‖
(∑d

i=1 g
2
i

)1/2

‖L∞(Ω). The space of such

functions is denoted as BV = BV(Ω). It is a Banach space when equipped with the norm

‖f‖BV(Ω) := ‖f‖L1(Ω) + |f |BV(Ω). (1.2)

If a function f ∈ BV(Ω) is in the smaller Sobolev space W 1(L1(Ω)), we can apply inte-
gration by parts in (1.1) and obtain that

|f |BV(Ω) :=

∫
Ω

|∇f |. (1.3)

It was recently shown ([4]) that, although BV does not possess an unconditional basis,
it is “almost” characterized by wavelet decompositions in terms of weak-type conditions
imposed on wavelet coefficients. Using this information about BV, it is possible to derive
optimal compression or estimation algorithms based on wavelet thresholding.

In order to describe this result, as well as the results of the present paper, we briefly
discuss wavelet bases. We shall confine our discussion to the d-dimensional wavelet bases
that are derived from a tensor product multiresolution analysis (see [7] or [13] for a detailed
treatment) although this is not essential.

Consider first the case of orthogonal wavelet bases. Let ψ0 = ϕ be a univariate, com-
pactly supported scaling function associated with the compactly supported, orthogonal
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univariate wavelet ψ1 = ψ. Let E ′ := {0, 1}d be the vertices of the unit cube and E
denote the set of nonzero vertices. For each e ∈ E ′, we define

ψe(x) = ψe1(x1) · · ·ψed(xd). (1.4)

Let D denote the set of dyadic cubes in Rd and let Dj denote those dyadic cubes that
have side length 2−j. For any dyadic cube I = 2−j(k + [0, 1]d) in Dj, and any e ∈ E ′, we
define the wavelet

ψeI(x) := 2j(d−1)ψe(2jx− k), (1.5)

which is a wavelet scaled relative to I. Note that we have normalized the wavelets ψeI in
BV(Rd) and not, as is more customary, in L2(Rd). (For d = 2, the two normalizations
coincide.) It follows that

C1 ≤ |ψeI |BV ≤ C2, (1.6)

where the constants C1 and C2 depend only on the BV(R) norms of the univariate func-
tions ϕ and ψ. Note also that we can replace the seminorm | · |BV in (1.6) by the norm
‖ · ‖BV as long as the size of the cubes I remains bounded. The functions

ψeI , I ∈ D, e ∈ E, (1.7)

form a complete orthogonal system in L2(Rd).
There is a similar construction of biorthogonal wavelet bases, see e.g. [7]. We start

with a pair of one-dimensional compactly supported scaling functions ψ0 := ϕ and ψ̃0 = ϕ̃
which are in duality: ∫

R

ϕ(t)ϕ̃(t− k) dt = δ(k), k ∈ Z, (1.8)

with δ the Kronecker delta, and their corresponding univariate wavelets ψ1 := ψ and
ψ̃1 := ψ̃. We define the functions ψeI as in (1.5) and ψ̃eI similarly except that the factor 2j

is used in place of 2j(d−1). The collection of functions {ψeI}I∈D,e∈E (when renormalized so
that (1.6) holds with | · |BV replaced by the L2 norm) forms a Riesz basis for L2(Rd) and
(a correspondingly renormalized version of) {ψ̃eI}I∈D,e∈E is its dual basis. The orthogonal
wavelet bases given above are special cases. Even in the orthogonal case we shall keep
the notation ψ̃eI to mark the difference in normalization.

Given a tempered distribution f on Rd, we define its wavelet coefficients by

f eI := 〈f, ψ̃eI〉 (1.9)

whenever this inner product is defined ( for example, if ψ̃eI is in Cr this will be the case for
all tempered distributions of order < r). The wavelet decomposition of f is then formally
defined as

f =
∑
e∈E

∑
I∈D

f eIψ
e
I , . (1.10)

We can simplify notation by introducing the vectors ψI = (ψeI)e∈E and fI = (f eI )
T
e∈E

so that we have
f =

∑
I∈D

fIψI . (1.11)
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We shall also consider the “non-homogeneous version” of this wavelet basis, which is
obtained by taking only the scales j ≥ 0 and by including the index e = (0, · · · , 0) when
j = 0, i.e., a coarse “layer” of scaling functions. Denoting by D+ := ∪j≥0Dj the set of
dyadic cubes with scale j ≥ 0, we write this decomposition as

f =
∑
I∈D+

FIΨI , (1.12)

where the FI and ΨI coincide with fI and ψI if I ∈ Dj, j > 0, while we incorporate
the index e = (0, · · · , 0) when j = 0. Regardless of which wavelet basis we choose, the
subscript I represents the spatial localization of the wavelets ψI and ψ̃I (I is contained
in their support), and its volume |I| = 2−jd indicates their scale (the size of their support
is proportional with |I|, with a proportionality constant independent of the scale). Note
that for the Haar system, i.e., when ϕ = ϕ̃ = χ]0,1[ and ψ = ψ̃ = χ]0,1/2[ − χ]1/2,1[, the

supports of ψI and ψ̃I coincide exactly with I.
We can now formulate the following result which was first proved in the case of the

Haar system [4] and later extended to more general compactly supported wavelets [5]. In
this theorem, and later, we use | · | to denote the Euclidean norm in Rl. A pivotal role is
played by the space w`1(D) (weak `1). It consists of those sequences (aI)I∈D for which

‖(aI)‖w`1 := sup
ε>0

[ε #{I ∈ D : |aI | > ε}] (1.13)

is finite.

Theorem 1.1 For all f ∈ BV(Rd), the coefficient sequence (fI)I∈D belongs to the space
w`1(D). More precisely, there exists a constant C > 0 such that for all f ∈ BV(Rd) and
ε > 0

#{I ∈ D : |fI | > ε} ≤ C|f |BV(Rd)ε
−1. (1.14)

Similarly, for the non-homogeneous basis indexed by D+, we have

#{I ∈ D+ : |FI | > ε} ≤ C‖f‖BV(Rd)ε
−1. (1.15)

On the other hand, from the BV normalization of the wavelets (see (1.6)), we see that
whenever (FI)I∈D+ ∈ `1(D+) then f :=

∑
I∈D+

FIΨI belongs to BV and satisfies

‖f‖BV(Rd) ≤ C‖(FI)‖`1(D+). (1.16)

Therefore, we have almost characterized BV(Rd) in the following sense. Let bv(D+)
denote the discrete space of wavelet coefficient sequences of BV functions with

‖(FI)I∈D+‖bv := ‖f‖BV(Rd). (1.17)

Then, we have the continuous embeddings

`1(D+) ⊂ bv(D+) ⊂ w`1(D+). (1.18)

This result is sufficient to ensure the optimality of estimation and compression algorithms
in the sense of [11] (see [4]).
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Theorem 1.1 also gives a direct easy access to some fine analysis results, such as the
following improved Poincaré inequality in dimension d = 2:

‖f‖2
L2(R2) ≤ C‖f‖B−1

∞ (L∞(R2))‖f‖BV(R2), (1.19)

where B−1
∞ (L∞(R2)) is the Besov space. The classical Poincaré inequality in this case

would involve the L∞ norm instead of the Besov norm on the right side of (1.19). The
importance of (1.19) is that it scales correctly for both dilation and modulation (i.e.
multiplication by a character eiω·x) whereas the original Poincaré inequality scales cor-
rectly only for dilation. In this sense, one could say that (1.19) is the “correct” Poincaré
inequality.

With Theorem 1.1 in hand, inequality (1.19) can be derived from two facts indicating a
pattern of argument that will be encountered later again. First one observes the inequality

‖(FI)‖2
`2
≤ ‖(FI)‖`∞‖(FI)‖w`1 . (1.20)

The second ingredient is that the L2 and B−1
∞ (L∞(R2)) norms of a function f are respec-

tively equivalent to the `2 and `∞ norm of the sequence (FI)I∈D+ . These are special cases
of norm equivalences that will be described later in more detail. The proof of (1.19) also
uses that for d = 2 the BV- and L2-normalizations of the wavelets coincide. Note that
there exists no other proof of (1.19) up to now.

The inequalities (1.19) and (1.20) can be viewed as special cases of interpolation using
the real method of Lions-Peetre (see e.g. [1] for an introduction). Given a pair of linear
spaces (X, Y ) continuously embedded in some Hausdorff space X , the K-functional for
this pair is given by

K(f, t;X,Y ) := inf
g∈Y,f−g∈X

‖f − g‖X + t‖g‖Y , t > 0, (1.21)

where ‖ · ‖X and ‖ · ‖Y are quasi-semi-norms for these spaces. For each 0 < θ < 1,
0 < q ≤ ∞, the intermediate space (X, Y )θ,q consists of all elements of X + Y for which

‖f‖(X,Y )θ,q
:= (

∞∫
0

[t−θK(f, t)]q
dt

t
)1/q, 0 < q <∞, (1.22)

is finite (with the usual change to a sup when q = ∞). The space (X, Y )θ,q is called an
interpolation space for this pair. It is an important question in analysis to characterize
the interpolation spaces for a given pair (X, Y ). Such characterizations are known for
many (but not all) pairs of classical spaces.

In particular, the intermediate spaces for any pair (`p, `q) of sequence spaces are known
to be Lorentz spaces. Also, the same conclusion holds if the spaces `p and `q are replaced
by their weak counterparts. As a special case, the “framing” of bv between `1 and w`1
gives

`2 = (`∞, `1)1/2,2 ⊂ (`∞, bv)1/2,2 ⊂ (`∞, w`1)1/2,2 = `2. (1.23)

From this and the characterization of L2 and the Besov space by wavelet coefficients, we
derive

L2 = (B−1
∞,∞,BV)1/2,2. (1.24)
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This method of determining interpolation spaces for a pair of smoothness spaces by iden-
tifying them with sequence spaces, via a boundedly invertible linear mapping, is called
the method of retracts. In the case of (1.24), this result (given in [4]) was new.

Given any pair (X, Y ), one always has the interpolation inequality

‖f ||(X,Y )θ,q
≤ ‖f‖1−θ

X ‖f‖θY (1.25)

(see [1], p. 49). Thus, given (1.24), (1.19) and (1.20) in turn follow from this general
principle (although (1.20) can be proved directly in a simple way as well).

Despite the above success, Theorem 1.1 is not sufficient to answer other fine ques-
tions in analysis. In fact, the present paper was motivated by questions raised by Yves
Meyer concerning the correct form of Gagliardo-Nirenberg-type inequalities. Improving
these inequalities in a similar way to (1.19) is equivalent to establishing new results on
interpolation between BV and other Sobolev and Besov spaces. The difficulty in accom-
plishing this is that general Sobolev and Besov spaces are described by applying weighted
`p(w) norms to wavelet coefficient sequences. The weights w take the form |I|s where we
denote as before by |I| := vol(I) the volume of I. Theorem 1.1 is no longer tailored to
this context, since the interpolation spaces between such a weighted `p space and w`1 no
longer yields the desired sequence space. Fortunately, there is a possible way around this
which was first utilized in [10]. The key is to incorporate weights both in renormalizing
the coefficients and in the weak `1 space. To describe this, we introduce the following
sequence spaces.

Definition 1.2 Let γ ∈ R. For 0 < p < ∞, the space `γp(D) consists of those sequences
(cI)I∈D such that (|I|−γcI)I∈D ∈ `p(D, |I|γ), i.e.,

‖(cI)I∈D‖p`γp(D)
:=

(∑
I∈D

|I|(1−p)γ|cI |p
)1/p

<∞. (1.26)

The space w`γp(D) consists of those sequences (cI)I∈D such that (|I|−γcI)I∈D ∈ w`p(D, |I|γ),
i.e.,

‖(cI)‖w`γp(D) := sup
ε>0

εp
∑

|cI |>ε|I|γ
|I|γ <∞. (1.27)

For p = ∞, the space `γ∞(D) consists of those sequences (cI)I∈D such that (|I|−γcI)I∈D ∈
`∞(D), i.e. |cI | ≤ C|I|γ. The spaces `γp(D+) and w`γp(D+) are defined analogously.

Note that when γ = 0 this corresponds to the classical `p and w`p spaces. Note also
that `γ1 coincides with `1 for all γ, while w`γ1 differs from w`1. In fact there is no natural
ordering of the spaces w`γ1 as γ varies.

Introducing the spaces w`γp helps us answer some questions concerning interpolation
of smoothness spaces. In the present context of BV, it is easy to reduce the questions of
Meyer to the following:
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For which values of γ do we have the embedding of bv into w`γ1(D) or equivalently the
weak-type estimate ∑

|fI |>ε|I|γ
|I|γ ≤ C|f |BV(Rd)ε

−1? (1.28)

The main result of this paper is to give a precise answer to this question in the following
theorem.

Theorem 1.3 Inequality (1.28) holds if and only if γ > 1 or γ < 1 − 1/d. The same
conclusion holds if in (1.28) we replace (fI)I∈D by (FI)I∈D+ and |f |BV(Rd) by ‖f‖BV(Rd).

Although Theorem 1.3 includes Theorem 1.1 as a particular case (γ = 0), the spirit
of our proof is quite different from [4].

The proof of Theorem 1.3 is given in the following sections. We use the remainder of
the present section to formulate and prove applications of Theorem 1.3 to interpolation
and Gagliardo-Nirenberg-type inequalities. We first discuss interpolation between BV
and the classical Besov-Sobolev spaces.

The Besov spaces Bs
p(Lp(Rd)) are typically defined using Littlewood-Paley decompo-

sitions or moduli of smoothness. However, they have an equivalent formulation in terms
of wavelet decompositions (see [13] or [2]) that we shall use here for their definition. Let
the univariate scaling function ϕ and its associated wavelet ψ be in Cr and similarly let
ϕ̃ and ψ̃ be in C r̃. Then, for each −r̃ < s < r, we define the Besov space Bs

p(Lp(Rd)),
1 < p ≤ ∞, as the set of all tempered distributions f such that

‖f‖Bs
p(Lp(Rd)) := ‖(|FI |)‖`γp(D+), γ := 1 + (s− 1)p∗/d (1.29)

is finite, where p∗ denotes the conjugate index to p.
This definition is in agreement with the characterization of Besov spaces by wavelet

decomposition but it looks a little strange because we have used the `γp norms. The usual

definition uses the Lp normalized wavelets ΨI,p = |I|
1

p∗−
1
d ΨI and their corresponding

coefficients FI,p. Then it takes the form

‖f‖Bs
p(Lp(Rd)) = ‖(|I|−s/d|FI,p|)‖`p(D+) (1.30)

which is identical with (1.29) because FI,p = |I|
1
d
− 1

p∗FI .
There is a similar wavelet description of the homogeneous Besov spaces Ḃs

p(Lp(Rd))
which were originally defined using Littlewood-Paley decompositions (see [13]). One can
define the space Bs

p(Lp(Rd)) as the set of all tempered distributions f such that

‖f‖Ḃs
p(Lp(Rd)) := ‖(|fI |)‖`γp(D), γ := 1 + (s− 1)p∗/d (1.31)

is finite.
We shall use the well known fact that for any γ ∈ R and 1 < p ≤ ∞, we have (see e.g.

Theorem 5.3.1, p.113 in [1])

`γq = (`γp , `
γ
1)θ,q = (`γp , w`

γ
1)θ,q, (1.32)
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whenever 0 < θ < 1 and
1

q
=

1− θ

p
+ θ. (1.33)

We should note that γ is the same for all the spaces in (1.32). Since the appropriate value
of γ is fixed by the Besov space that we wish to pair with BV, we have no flexibility in its
choice and therefore cannot just simply apply Theorem 1.1 which corresponds to γ = 0.

Clearly from (1.32) and (1.25) it follows that we

‖(aI)‖`γq ≤ C‖(aI)‖1−θ
`γp
‖(aI)‖θw`γ1 . (1.34)

Theorem 1.4 Assume that γ > 1 or γ < 1−1/d, and let (s, p) satisfy (s−1)p∗/d = γ−1
for some 1 < p ≤ ∞. Then, for any 0 < θ < 1, we have

(Bs
p(Lp(Rd)),BV(Rd))θ,q = Bt

q(Lq(Rd)) (1.35)

with equivalent norms and with

1

q
=

1− θ

p
+ θ, t = (1− θ)s+ θ. (1.36)

Similarly, we have
(Ḃs

p(Lp(Rd)), ḂV(Rd))θ,q = Ḃt
q(Lq(Rd)) (1.37)

with the same restrictions on p, q, t. Here ḂV means that in the definition of the K-
functional (1.21) we use the seminorm | · |BV rather than ‖ · ‖BV.

Proof: Consider the wavelet transform which linearly maps f into (FI)I∈D+ . In view of
(1.29), it is an isometry between Bs

p(Lp(Rd)) and `γp(D+). We also know from (1.18) that
the image bv(D+) of BV(Rd) is framed by `γ1(D+) and w`γ1(D+) . Hence, using (1.32), we
deduce that a distribution f is in (Bs

p(Lp(Rd)),BV(Rd))θ,q if and only if (FI)I∈D+ ∈ `γq (D+)
with equivalent norms. Now observe that for q and t as in (1.36) one has (s − 1)p∗ =
(t − 1)q∗. Thus one also has γ = 1 + (t − 1)q∗/d and invoking the definition of Besov
spaces (1.29), the proof is completed. In the homogeneous case, we use the mapping of f
into (fI)I∈D to arrive at (1.37). �

Combining Theorem 1.4 with (1.25) we immediately obtain the following Gagliardo-
Nirenberg-type inequalities.

Theorem 1.5 Under the same assumptions and using the same notation as in Theorem
1.4 we have

‖f‖Bt
q(Lq(Rd)) ≤ C‖f‖1−θ

Bs
p(Lp(Rd))

‖f‖θBV(Rd). (1.38)

and
‖f‖Ḃt

q(Lq(Rd)) ≤ C‖f‖1−θ
Ḃs

p(Lp(Rd))
|f |θBV(Rd). (1.39)

In particular, for the Sobolev space Hs(Rd) = W s(L2(Rd)), we have

‖f‖2
Hs(Rd) ≤ C‖f‖B2s−1

∞ (L∞(Rd))‖f‖BV(Rd), (1.40)
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provided s < 1/2 or s > 1. For s = 0, this establishes (1.19) in any dimension.
The remainder of this paper will be devoted to the proof of Theorem 1.3. We begin

in Section 2 by gathering some known results about functions in BV. In Section 3 we
prove a main technical result for the case γ < 0 or γ > 1. The case 0 ≤ γ < 1 − 1

d

is handled in Section 4. Section 5 links this technical result with wavelet expansions
and completes the proof of Theorem 1.3. We conclude this section with indicating some
implications concerning restricted nonlinear approximation. Finally, Section 6 illustrates
that the restriction on γ is sharp by providing counter-examples for 1− 1

d
≤ γ ≤ 1.

In all our arguments, and unless stated otherwise, C denotes a generic constant, the
value of which may vary even within the same proof.

2 Some properties of BV functions

For a detailed treatment of BV functions including the proofs of the following fundamental
results, we refer the reader to [14] or [12].

Although we shall not use it in the sequel, we first recall the alternate (and equivalent)
definition of BV by finite differences: if Ω is an open set of Rd, f ∈ L1(Ω) has bounded
variation if and only if the quantity

sup
|h|≤1

‖f − f(·+ h)‖L1(Ωh)

|h|
, (2.1)

is finite where Ωh := {x ∈ Ω : x + th ∈ Ω for t ∈ [0, 1]}. Moreover for a fixed Ω, this
quantity is equivalent to the total variation |f |BV(Ω). We also recall that the space BV(Ω)
is (non-compactly) embedded in Ld∗(Ω) with d∗ = d

d−1
and that we have the embedding

inequality (see [14], p. 81)
‖f‖Ld∗ (Ω) ≤ C(Ω)‖f‖BV(Ω). (2.2)

We shall use the possibility of approximating the functions of BV(Ω) by smooth func-
tions in the following sense (see e.g. [12], p.172 or [14], p.225).

Theorem 2.1 Let f ∈ BV(Ω). Then there exists a sequence {fk}k≥0 in BV(Ω)∩C∞(Ω)
such that

lim
k→+∞

‖f − fk‖L1(Ω) = 0 and lim
k→+∞

|fk|BV(Ω) = |f |BV(Ω). (2.3)

This result will allow us to reduce the proof of our weak-type estimates to smooth functions
for which we have |f |BV(Ω) =

∫
Ω

|∇f |.

Characteristic functions of sets are particular instances of BV functions which will
play an important role in our analysis. If E is a bounded open set with smooth boundary,
then it is easy to check from the definition that χE ∈ BV(Ω) and that

|χE|BV(Ω) = Hd−1(∂E ∩ Ω), (2.4)

where here and laterHs denotes the s-dimensional Hausdorff measure. The above equality
is not true for more general open sets with finite perimeter but no Lipschitz boundary
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(take e.g. E := {(x, y) |x| < 1, 0 < |y| < 1}), for which we have only the inequality

|χE|BV(Ω) ≤ Hd−1(∂E ∩ Ω). (2.5)

The importance of characteristic functions in the description of BV is emphasized by
the co-area formula which has the following classical form for sufficiently smooth functions.
If f ∈ BV(Ω) ∩ C1(Ω), then one has∫

Ω

|∇f | =
∫
R

Hd−1(Ω ∩ f−1({t}))dt, (2.6)

(see [12], p.112 or [14], p.76 ). To extend this relation to general BV functions one
introduces the level sets Et = Et(f) defined by Et = {x ∈ Ω : f(x) ≥ t}. The above
formula then takes the following form (see [12], p.185):

Theorem 2.2 For f ∈ BV(Ω) one has

|f |BV(Ω) =

∫
R

|χEt|BV(Ω)dt. (2.7)

Such level sets might not have a C1 boundary for almost every t and therefore one cannot
substitute Hd−1(∂Et ∩Ω) in place of |χEt|BV. The co-area formula (2.7) reveals that BV
admits an atomic decomposition in terms of characteristic functions since we have

f(x) = lim
z→−∞

z +

+∞∫
z

χEt(x)dt. (2.8)

Such a decomposition can be particularly useful when proving properties of the type
Φ(f) ≤ C|f |BV where Φ is a convex functional, since it reduces the proof to the case
where f is a single atom χE.

We shall also need a version of the isoperimetric inequality which we prove here by
applying the embedding of BV into Ld

∗
to characteristic functions.

Theorem 2.3 Let Q be an open cube of Rd and let E be a domain with a smooth boundary.
Define EQ := E ∩ Q and its complement ẼQ := Q \ EQ. Then there exists a constant C
independent of E and of Q such that

min{|EQ|, |ẼQ|} ≤ C[Hd−1(∂E ∩Q)]d
∗
. (2.9)

Proof: Let E∗
Q denote the set of minimal measure among EQ and ẼQ and define

aQ(f) := |Q|−1

∫
Q

f,

10



We clearly have |χE − aQ(χE)| ≥ 1/2 on E∗
Q and therefore∫

Q

|χE − aQ(χE)|d∗ ≥ 2−d
∗
min{|EQ|, |ẼQ|}. (2.10)

In view of the formula (2.4), (2.9) follows as soon as we can estimate the left hand side
of (2.10) by |χE|d

∗

BV(Ω). This in turn is a consequence of the following Poincaré inequality
for general BV functions

‖f − aQ(f)‖Ld∗ (Q) ≤ C|f |BV(Q). (2.11)

This could be derived directly but we will use here an argument that will be needed later
anyway. To this end, note that

‖f−aQ(f)‖L1(Q) = |Q|−1

∫
Q

|
∫
Q

(f(x)−f(y))dy|dx ≤ |Q|−1

∫
Q×Q

|f(x)−f(y)|dxdy, (2.12)

and assume first that f ∈ W 1(L1(Ω)). For each x = (x1, · · · , xd) and y = (y1, · · · , yd) we
can define the segments

Si(x, y) := Q ∩ {(x1, · · · , xi−1, t, yi+1, · · · , yd) ; t ∈ R}, i = 1, · · · , d.

With such a definition, we can connect x and y by a path S(x, y) ⊂ ∪iSi(x, y) so that

|f(x)− f(y)| ≤
d∑
i=1

∫
Si(x,y)

∣∣∣∣ ∂f∂xi
∣∣∣∣ .

Integrating with respect to x and y we can estimate the right hand side of (2.12) by

|Q|−1

d∑
i=1

∫
Q×Q

∫
Si(x,y)

∣∣∣∣ ∂f∂xi
∣∣∣∣ dx dy ≤ |Q|1/d

d∑
i=1

∫
Q

∣∣∣∣ ∂f∂xi
∣∣∣∣ ≤ √

d|Q|1/d
∫
I

|∇f |.

Now (1.3) and Theorem 2.1 imply that for any f ∈ BV(Q)

‖f − aQ(f)‖L1(Q) ≤ |Q|−1

∫
Q×Q

|f(x)− f(y)|dxdy ≤
√
d|Q|1/d|f |BV(Q). (2.13)

In particular, for the unit d-cube � the estimate ‖f − a�(f)‖BV(�) ≤ (1 +
√
d)|f |BV(�)

follows. The embedding (2.2) of BV(�) into Ld∗(�) yields ‖f−aQ(f)‖Ld∗ (�) ≤ C(�)‖f−
aQ(f)‖BV(�) and thus ‖f − a�(f)‖Ld∗ (�) ≤ C(�)|f |BV(�). One easily checks that this
latter estimate remains invariant under rescaling which confirms (2.11) and completes the
proof.

In the sequel we shall assume Ω = Rd, and the space BV will always refer to BV(Rd).
Let g be a function in L∞ supported on ]0, 1[d and such that

∫
g = 0. For I :=

2−j(]0, 1[d+k) a dyadic cube in D, we define

gI := 2jg(2j · −k). (2.14)

11



For I ∈ D, we introduce four quantities which measure in some sense the oscillation of a
function f on I. The first one is the size of the inner product with gI , i.e.

cI := cI(f) := |〈f, gI〉|. (2.15)

The second one is the renormalized error of approximation by constants

rI := rI(f) := |I|−1/d‖f − aI(f)‖L1(I). (2.16)

The third one is the renormalized averaged modulus of continuity

wI := wI(f) := |I|−1−1/d

∫
I×I

|f(x)− f(y)|dx dy. (2.17)

The above three quantities are well defined whenever f ∈ L1(I). When f ∈ W 1(L1(I)),
we define the fourth one as the variation of f on I

vI := vI(f) :=

∫
I

|∇f | ; (2.18)

for general BV functions, we set vI(f) := |f |BV(I).

Lemma 2.4 We have for all f ∈ L1(I)

cI(f) ≤ ‖g‖L∞(Rd)rI(f), (2.19)

and
rI(f) ≤ wI(f). (2.20)

For all f ∈ BV(I) we have

wI(f) ≤
√
dvI(f). (2.21)

Proof: Observing that gI is orthogonal to constants, we obtain

cI(f) = |〈f, gI〉| = |〈f − aI(f), gI〉|
≤ ‖f − aI(f)‖L1(I)‖gI‖L∞ = ‖g‖L∞|I|−1/d‖f − aI(f)‖L1(I),

which is (2.19). The second inequality (2.20) follows from (2.12). Finally (2.21) immedi-
ately follows from (2.13).

This list of inequalities will be used to prove the following result.

Theorem 2.5 Let f ∈ BV(Rd). Then (cI(f))I∈D ∈ w`γ1(D) for all γ < 1 − 1/d or
γ > 1. More precisely, there exists a constant C depending only on γ such that for all
f ∈ BV (Rd) and ε > 0 we have ∑

I∈D; cI(f)>ε|I|γ
|I|γ ≤ C|f |BV(Rd)ε

−1. (2.22)

12



The proof of this result is the object of the next two sections. This theorem will
then be used in §5 to prove Theorem 1.3. For the proof of Theorem 2.5, we shall restrict
ourselves to f ∈ BV(Rd)∩C∞(Rd). The result for a general f ∈ BV(Rd) is then proved by
using the approximation sequence (fk)k≥0 of Theorem 2.1 and noting that 〈fk, gI〉 tends
to 〈f, gI〉 for all I. If follows that if (2.22) holds for all the fk, then for each finite subset

Λ∗ε ⊂ Λε := {I ∈ D : |〈f, gI〉| > ε|I|γ}, (2.23)

we have the property ∑
I∈Λ∗ε

|I|γ ≤ C|fk|BV(Rd)ε
−1, (2.24)

provided k is sufficiently large. Letting k go to infinity, we conclude that (2.22) also holds
for f .

3 The case γ < 0 or γ > 1

We begin with the cases γ < 0 or γ > 1 which have simple proofs. In these cases, it is
sufficient to use the estimate cI(f) ≤ CvI(f) of Lemma 2.4 with C =

√
d‖g‖L∞ .

Theorem 3.1 Assume that γ > 1 or γ < 0. Then f ∈ BV(Rd) ∩ C∞(Rd) implies that
(vI(f)) ∈ w`γ1(D). More precisely, there exists C = C(γ) such that for all such f and
each ε > 0, ∑

vI(f)>ε|I|γ
|I|γ ≤ Cε−1

∫
Rd

|∇f |. (3.1)

Proof: For f ∈ BV(Rd) ∩ C∞(Rd) and ε > 0, we want to estimate
∑

I∈Λε
|I|γ where

Λε := Λε(f) := {I ∈ D : vI(f) > ε|I|γ}. (3.2)

We first treat the case γ > 1. We define Λmax
ε as the subset of maximal cubes of Λε, i.e.

those I ∈ Λε such that for all J ∈ Λε, I ⊆ J implies I = J .
Since vI(f) ≤ |f |BV and since γ > 0, there exists a constant A > 0 depending of f

and ε such that for |I| ≥ A, we always have vI(f) ≤ ε|I|γ, i.e. I /∈ Λε. It follows that any
cube J ∈ Λε is always contained in some maximal cube I ∈ Λmax

ε . Consequently, we have
the estimate∑

I∈Λε

|I|γ ≤
∑

I∈Λmax
ε

∑
J⊆I

|J |γ =
∑

I∈Λmax
ε

∑
j≥0

∑
J⊆I,|J |=2−jd|I|

|J |γ

=
∑

I∈Λmax
ε

|I|γ
∑
j≥0

2(1−γ)dj ≤ C
∑

I∈Λmax
ε

|I|γ ≤ Cε−1
∑

I∈Λmax
ε

vI(f).

Since the maximal cubes of Λmax
ε are necessarily pairwise disjoint we conclude that∑

I∈Λmax
ε

vI(f) ≤
∫
Rd

|∇f | which proves (3.1).

In the case γ < 0, we define Λmin
ε as the subset of minimal cubes of Λε, i.e., those I ∈ Λε

such that for all J ∈ Λε, J ⊆ I implies I = J . Since vI(f) =
∫
I

|∇f | ≤ ‖∇f‖L∞(J)|I| for
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all I ⊆ J , and since γ < 0, for any fixed dyadic cube J there exists a > 0 depending of
f and ε such that if I ⊂ J and |I| ≤ a, we have vI(f) ≤ ε|I|γ, i.e., I /∈ Λε. It follows
that any J ∈ Λε contains only a finite number of I ∈ Λε, and in turn always contains a
minimal cube I ∈ Λmin

ε . Using also the fact that each I ∈ Λmin
ε is contained in at most

one dyadic cube J ∈ Dj for any j, we have the estimate∑
I∈Λε

|I|γ ≤
∑

I∈Λmin
ε

∑
J⊇I

|J |γ =
∑

I∈Λmin
ε

|I|γ
∑
j≥0

2γdj

≤ C
∑

I∈Λmin
ε

|I|γ ≤ Cε−1
∑

I∈Λmin
ε

vI(f).

We conclude the proof in a similar manner as above, noting that the minimal cubes of
Λmin
ε are necessarily pairwise disjoint.

In view of the remarks at the end of §2, Theorem 3.1 implies Theorem 2.5 in the cases
γ < 0 or γ > 1.

4 The case 0 ≤ γ < 1− 1/d

In this case, the estimate cI(f) ≤ CvI(f) is not sufficient to prove Theorem 2.5 because
the sequence (vI(f)) does not satisfy the weak-type estimate (3.1) when 0 ≤ γ ≤ 1. For
instance, take γ = 0 and consider a non trivial smooth function f with compact support
in ]0, 1[d; observe that there exists an infinite number of dyadic cubes I containing ]0, 1[d

for which we have vI(f) = C > 0.
Instead we shall use the finer estimate cI(f) ≤ CwI(f), with C = ‖g‖L∞ , combined

with the following result.

Theorem 4.1 Let γ < 1− 1/d. Then f ∈ BV(Rd) ∩ C∞(Rd) implies that (wI(f))I∈D ∈
w`γ1 . More precisely, there exists a constant C = C(γ) such that for all such f and each
ε > 0, ∑

wI(f)>ε|I|γ
|I|γ ≤ Cε−1

∫
Rd

|∇f |. (4.1)

The proof of this result will involve some intermediate lemmas. Define the set

Λε := Λε(f) := {I ∈ D : wI(f) > ε|I|γ}. (4.2)

Our goal is to show that

ε
∑
I∈Λε

|I|γ ≤ C|f |BV(Rd). (4.3)

We first fix some α such that γ < α < 1 − 1/d and establish a distinction between two
types of cubes in Λε.

14



Definition 4.2 We say a cube I ∈ Λε is good if for each collection P ⊂ Λε of pairwise
disjoint cubes strictly contained in I, we have∑

J∈P

|J |α ≤ |I|α,

or if I is minimal in Λε, i.e., there is no J ∈ Λε strictly contained in I. If I ∈ Λε is not
good we say it is bad. We denote the set of good cubes in Λε by G and the set of bad cubes
by B.

Clearly G and B depend on f , ε, γ and α. Our next lemma shows that it is sufficient to
prove (4.3) with G in place of Λε.

Lemma 4.3 We have ∑
I∈B

|I|γ ≤ C
∑
I∈G

|I|γ, (4.4)

where the constant C > 0 depends only on α and γ.

Proof: Since wJ(f) ≤ C‖∇f‖L∞(I)|J | for all J ⊆ I and since γ < 1, there exists a
constant a > 0 such that if J ⊂ I and |J | ≤ a, we always have wJ(f) ≤ ε|J |γ, i.e., J /∈ Λε.
It follows that any I ∈ Λε contains only a finite number of J ∈ Λε.

For I ∈ B, we denote by G(I) the set of all cubes J ⊂ I such that J ∈ G. Clearly this
set is also finite. We shall first prove that

|I|α ≤
∑
J∈G(I)

|J |α. (4.5)

¿From the definition of bad cubes, there is a set P(I) ⊂ Λε of disjoint cubes contained in
I such that

|I|α ≤
∑

J∈P(I)

|J |α ≤
∑

J∈P(I)∩G

|J |α +
∑

J∈P(I)∩B

|J |α = Σ1 + Σ2.

The terms in Σ1 are not processed further and become part of the right side of (4.5). The
terms in Σ2 are processed further. Namely, for each J appearing in

∑
2 there is a set

P(J) ⊂ Λε such that

|J |α ≤
∑

K∈P(J)

|K|α ≤
∑

K∈P(J)∩G

|K|α +
∑

K∈P(J)∩B

|K|α.

Again, the terms in the first sum are not processed further and become part of the right
side of (4.5), remarking that P(J)∩G is necessarily disjoint from P(I)∩G. The terms in
the second sum are processed further. Continuing in this way, we arrive at (4.5) in a finite
number of steps since G(I) is finite, and since the minimal cubes of Λε are by definition
contained in G.

It follows from (4.5) that if I ∈ B, then

|I|γ ≤ |I|γ−α
∑
J∈G(I)

|J |α =
∑
J∈G(I)

|J |γ2−δd(I,J),
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where δ := (α− γ)d > 0 and d(I, J) is the number of levels between J and I, i.e.

d(I, J) :=
| log(|I|/|J |)|

d log 2
. (4.6)

Therefore, the left side of (4.4) does not exceed∑
I∈B

∑
J∈G(I)

|J |γ2−δd(I,J) ≤
∑
J∈G

|J |γ
∑

I∈B,I⊃J

2−δd(I,J).

For J ∈ G and k > 0, there is at most one I ⊃ J with d(I, J) = k, and therefore∑
I∈B,I⊃J

2−δd(I,J) ≤
∞∑
k=1

2−kδ = C.

This proves the lemma.

It follows from Lemma 4.3 that we need to estimate only
∑

I∈G |I|γ in order to prove
Theorem 4.1. We shall actually prove that the subsequence (wI(f))I∈G satisfies a strong
`1 property. For this purpose, we introduce the following definition.

Definition 4.4 A subset R ⊂ D is called α-sparse if and only if for all I ∈ R and any
set P ⊂ R of disjoint dyadic cubes contained in I, we have∑

J∈P

|J |α ≤ |I|α. (4.7)

Clearly G is an example of an α-sparse set.
With this definition we have the following theorem.

Theorem 4.5 There exists a constant C such that for any α-sparse set R, we have∑
I∈R

wI(f) ≤ C|f |BV(Rd). (4.8)

Proof: Since we want to prove a strong `1 estimate, we can use the co-area formula to
reduce the proof to the case where f is of the type

f = χE, (4.9)

where E is a set with smooth boundary of finite d − 1-dimensional measure Hd−1(∂E).
Indeed, assume for a moment that (4.8) holds for such characteristic functions. If f ∈
BV(Rd) ∩ C∞(Rd), then, for almost every t ∈ R, the level sets Et = {x ∈ Ω : f(x) ≥ t}
have a smooth boundary and thus satisfy∑

I∈R

wI(χEt) ≤ C|χEt|BV(Rd). (4.10)

For all I, (2.8) yields

wI(f) ≤
+∞∫
−∞

wI(χEt)dt. (4.11)
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Combining these inequalities with (2.7), we conclude that for all finite subsets Λ ⊂ R we
have ∑

I∈Λ

wI(f) ≤ C|f |BV(Rd), (4.12)

and therefore (4.8) also holds for f .
Also note that |Et| < ∞ if t > 0 and |Rd \ Et| < ∞ if t < 0 (since f ∈ L1). Thus,

it suffices to establish (4.8) for f = χE, where E is a set such that either |E| < ∞ or
|Rd \ E| < ∞, which we will assume for the rest of the proof. For I ∈ R, we define by
EI := I ∩E and its complement ẼI = I \EI . ¿From its definition, we see that wI satisfies
the estimate

wI(f) ≤ |I|−1−1/d|I|min{|EI |, |ẼI |} = |I|1−1/d min{|EI |, |ẼI |}/|I|. (4.13)

Clearly, ∑
I∈R

wI(f) =
∑
I∈R∗

wI(f), (4.14)

where R∗ := {I ∈ R : min{|EI |, |ẼI |} > 0} is the set of cubes whose interior intersects
the boundary ∂E. For each k > 0, denote by Rk the set of cubes in R∗ such that

2−k−1 < min{|EI |, |ẼI |}/|I| ≤ 2−k. (4.15)

The sets Rk are pairwise disjoint and R∗ = ∪k>0Rk. We thus have∑
I∈R

wI(f) =
∑
k>0

∑
I∈Rk

wI(f). (4.16)

We denote by Rk,0 the maximal cubes of Rk, i.e., the set of those I ∈ Rk such that there
exists no J ∈ Rk strictly containing I. Note that since |E| < ∞ or |Rd \ E| < ∞, there
exists A > 0 such that |I| ≥ A implies

min{|EI |, |ẼI |}/|I| ≤ min{|E|, |Rd \ E|}/|I| ≤ 2−k−1,

i.e. I /∈ Rk. Therefore, any in Rk is contained in some maximal cube of Rk,0. If I is
in Rk,0 and J ∈ Rk is contained in I, we define the generation of J as the number of
different cubes K 6= I in Rk such that J ⊆ K ⊂ I. In particular, all cubes in Rk,0 have
generation 0. We denote by Rk,j the collection of cubes in Rk of generation j. Note that
the cubes in Rk,j are pairwise disjoint, and that Rk = ∪j≥0Rk,j, so that we have∑

I∈R

wI(f) =
∑
k>0

∑
j≥0

∑
I∈Rk,j

wI(f). (4.17)

For a fixed k > 0, we can write in view of (4.15) and (4.13)∑
j≥0

∑
I∈Rk,j

wI(f) ≤ 2−k
∑
j≥0

∑
I∈Rk,j

|I|1−1/d. (4.18)
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We next define η = 1− 1/d− α > 0 and remark that for j ≥ 0 each J ∈ Rk,j+1 must
have a parent in Rk,j. From the definition of α-sparse sets and the fact that the Rk,j,
j ≥ 0, are sets of disjoint cubes, we infer that∑

I∈Rk,j−1

|I|1−1/d =
∑

I∈Rk,j−1

|I|η|I|α ≥
∑

I∈Rk,j−1

|I|η
∑

J∈Rk,j ,J⊂I

|J |α

=
∑

I∈Rk,j−1

∑
J∈Rk,j ,J⊂I

(|I|/|J |)η|J |1−1/d ≥ 2dη
∑

J∈Rk,j

|J |1−1/d,

where the first inequality used the definition (4.7) of α-sparse. Therefore, we obtain by
induction that ∑

I∈Rk,j

|I|1−1/d ≤ 2−dηj
∑
I∈Rk,0

|I|1−1/d, (4.19)

so that the summation over j, for fixed k, can be bounded by∑
j≥0

∑
I∈Rk,j

wI(f) ≤ C2−k
∑
I∈Rk,0

|I|1−1/d. (4.20)

Now if I ∈ Rk,0, we see from (4.15) that |I| ≤ 2k+1 min{|EI |, |ẼI |} and therefore∑
I∈Rk,0

|I|1−1/d ≤ 2(k+1)(1−1/d)
∑
I∈Rk,0

(
min{|EI |, |ẼI |}

)1−1/d

. (4.21)

¿From the isoperimetric inequality of Theorem 2.3 we obtain(
min{|EI |, |ẼI |}

)1−1/d

≤ CHd−1(∂E ∩ I). (4.22)

Since the maximal cubes of Rk,0 are pairwise disjoint, it follows from (4.21) and (4.22)
that ∑

I∈Rk,0

|I|1−1/d ≤ C2k(1−1/d)Hd−1(∂E). (4.23)

Combining this estimate with (4.20) and (4.18), we obtain∑
j≥0

∑
I∈Rk,j

wI(f) ≤ C2−k/dHd−1(∂E).

Summing over k > 0 according to (4.17), we finally arrive at the estimate∑
I∈R

wI(f) ≤ CHd−1(∂E) = C|χE|BV(Rd), (4.24)

where the last equality is (2.4). This concludes the proof of the theorem.

We now apply Theorem 4.5 to R = G. Since `1 = `γ1 ⊂ w`γ1 , the theorem implies
the weak estimate

∑
I∈G |I|γ ≤ C|f |BV(Rd)ε

−1. From Lemma 4.3 we see that the proof of
Theorem 4.1 is now complete. Combined with the results of §3, this also completes the
proof of Theorem 2.5.
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5 Application to wavelet decompositions

The results of the two previous sections prove Theorem 2.5. We cannot simply replace
the coefficients cI(f) by the wavelet coefficients fI in this theorem, because, in contrast
to the functions gI , the compactly supported dual wavelets ψ̃I generally have a support
strictly larger than I, so that |fI | ≤ CwI(f) need not be true. In order to circumvent this
problem we use a technique proposed by Meyer, already applied in [5].

Theorem 5.1 Let f ∈ BV(Rd). Then (fI)I∈D ∈ w`γ1(D) for all γ < 1 − 1/d or γ > 1.
More precisely, there exists a constant C only depending on γ such that for all f ∈ BV(Rd)
and ε > 0 we have ∑

|fI |>ε|I|γ
≤ C|f |BV(Rd)ε

−1. (5.1)

Proof: We first remark that up to a shift of spatial indices, we can always assume that
the generators ψ̃e of the dual wavelets are supported in ]0, p[d where p is a sufficiently large
prime integer. We fix any e ∈ E and define g := ψ̃e(p·), which is now supported in ]0, 1[d.
For an arbitrary but fixed r ∈ P := {0, 1, · · · , p − 1}d, we define f̃r(x) := pd−1f(px + r).
Theorem 2.5 implies that for γ < 1− 1/d or γ > 1, we have the weak-type estimate∑

crI(f)>ε|I|γ
|I|γ ≤ C|f̃r|BV(Rd)ε

−1 = C|f |BV(Rd)ε
−1, (5.2)

with crI(f) := |〈f̃r, gI〉|. Now for I := 2−j(]0, 1[d+k), we have

〈f̃r, gI〉 = 2j
∫
Rd

f̃r(x)g(2
jx− k)dx = 2j

∫
Rd

pd−1f(px+ r)g(2jx− k)dx

= p−12j
∫
Rd

f(x)ψ̃e(2jx− l)dx = p−1f eJ ,

where l := 2jr + pk and J = 2−j(]0, 1[d+l).
We next observe that for j ∈ N, the mapping

(k, r) 7→ 2jr + pk (5.3)

is a bijection from Zd × P onto Zd, due to the fact that x 7→ 2jx is a bijection from
(Z/pZ)d onto itself. In other words, each coefficient f eI appears as one of the crI(f), r ∈ P .
Since the sets P and E are finite, it follows from these observations that∑

|fI |>ε|I|γ ,I∈D+

|I|γ ≤ C|f |BV(Rd)ε
−1. (5.4)

We can remove the restriction that I ∈ D+ in (5.4) as follows. We apply this estimate
to fq := 2q(1−1/d)f(2q·), q ∈ N, and observe that, by a change of variable,∑

|(fq)Ĩ |>ε̃|Ĩ|γ ,Ĩ∈D+

|Ĩ|γ ≤ C|fq|BV(Rd)ε̃
−1,
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becomes ∑
|fI |>ε|I|γ ,|I|≤2dq

|I|γ ≤ C|f |BV(Rd)ε
−1,

where |I| = 2qd|Ĩ| and ε̃ = ε2q(1−d)(1−1/d); C is still the same constant, independent of q
and ε. By letting q go to +∞, we arrive at (5.1).

A similar result can be derived for the non-homogeneous basis associated with the
decomposition (1.12).

Theorem 5.2 Let f ∈ BV(Rd). Then (FI)I∈D+ ∈ w`
γ
1(D+) for all γ < 1− 1/d or γ > 1.

More precisely, there exists a constant C depending only on γ such that for all f ∈ BV(Rd)
and ε > 0 we have ∑

|FI |>ε|I|γ
|I|γ ≤ C‖f‖BV(Rd)ε

−1. (5.5)

Proof: By Theorem 5.1, we already have the weak type estimate∑
|FI |>ε|I|γ ,|I|<1

|I|γ ≤ C‖f‖BV ε−1, (5.6)

since FI = fI if |I| < 1. For |I| = 1, we have a strong estimate∑
I∈D0

|FI | ≤ C
∑
I∈D0

∫
supp(ψ̃I)

|f | ≤ CAd‖f‖L1(Rd), (5.7)

where A is such that supp(ψ̃e) ⊂ [0, A]d for all e ∈ E ′. Combining these estimates, we
obtain (5.5).

The above results can easily be adapted to most constructions of wavelets defined
on simple bounded domains such as a cube (see e.g. [2] or [6] for examples of such
constructions).

Let us finally mention that the weak type estimates of Theorem 5.1 and Theorem 5.2
have equivalent formulations in terms of the approximation performance of thresholding
procedures studied in [3]. For 0 < r ≤ ∞, consider the Lr-thresholding operator T r

ε

defined by

T r
ε f :=

∑
‖fIψI‖Lr>ε

fIψI (5.8)

The results of [3] show that for 0 < p < ∞, the rate of decay of ‖f − T r
ε f‖Hp , as ε goes

to zero, is determined by weighted weak-type estimates on the renormalized coefficient
sequence (‖fIψI‖Lr)I∈D. Here Hp denotes the Hardy space which coincides with Lp when
p > 1. More precisely, we have by Theorem 7.1 of [3] that for µ < p,

‖f − T r
ε f‖Hp < Cµ/pε1−µ/p, (5.9)

if and only if the sequence (‖fIψI‖Lr)I∈D belongs to the space w`µ(D, |I|γ) with γ :=
1 − p/r; the smallest C satisfying (5.9) is then equivalent to ‖(‖fIψI‖Lr)I∈D‖w`µ(D,|I|γ).
Note that when p = r, i.e. when we use the same metric for thresholding as for measuring
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the approximation error, we find the standard w`µ spaces. However, there are situations
in which one prefers to use different metrics for thresholding and measuring the approxi-
mation error, such as in statistical estimation, where one may be interested in estimating
a noisy function in some arbitrary Lp norm, but where the structure of the white noise
imposes the L2 metric for thresholding. For this particular situation, the case γ < 1−1/d
in Theorem 5.1, combined with (5.9) implies the following result:

Theorem 5.3 Let f ∈ BV(Rd). Then for 0 < r < ∞ and p = 1 + r/d, we have the
thresholding estimate

‖f − T r
ε f‖Lp ≤ C|f |BV (Rd)ε

1−1/p. (5.10)

6 Counter-examples

The purpose of this last section is to prove that Theorem 5.1 and Theorem 5.2 are no longer
true for the range 1−1/d ≤ γ ≤ 1. We shall exhibit counter-examples in the case where the
wavelets are given by the Haar system, i.e. ϕ = ϕ̃ := χ]0,1[ and ψ = ψ̃ := χ]0,1/2[−χ]1/2,1[.
We first consider the one-dimensional setting, corresponding to the range 0 ≤ γ ≤ 1. If I
is a dyadic interval, then the BV-normalized wavelet coefficient fI of a function f is given
by

fI = 〈f, ψ̃I〉 =
1

2
(aIl(f)− aIr(f)), (6.1)

where aIl(f) and aIr(f) are respectively the averages of f on Il and Ir, the left and right
half-intervals of I. The counter examples that we shall build are functions supported
on ]0, 1[ and we shall consider their wavelet coefficients only for |I| ≤ 1. We shall treat
separately the cases γ = 0, γ = 1 and 0 < γ < 1.

In the case γ = 1, we consider the function

f(x) = xχ]0,1[(x),

which is clearly in BV(R). If I ⊂]0, 1[, a straightforward computation shows that

fI = −|I|/4.

Therefore, taking ε = 1/5, we obtain that∑
|fI |>ε|I|

|I| ≥
∑
I⊂]0,1[

|I| = +∞,

which shows that the weak estimate does not hold when γ = 1.
In the case γ = 0 we consider the function

f = χ[0,1/3],

which is clearly in BV(R). For each j ≥ 0, there exist one dyadic interval Ij containing
the jump point 1/3 and such that |Ij| = 2−j. This jump point is always located at either
the 1/3 or 2/3 position of Ij, since 1/3 =

∑∞
j=1 2−2j. It follows that

fIj = 1/3,
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for all j ≥ 0. Therefore taking ε = 1/4, we obtain that

#{I : |fI | > ε} = ∞,

which shows that the weak estimate does not hold when γ = 0.
We now consider the case 0 < γ < 1. Here, we set α := 1/γ > 1 and we define the

sequence (jk)k≥0 of integers by

2−jk−1 < 2−αk ≤ 2−jk . (6.2)

Note that j0 = 0 and that the sequence jk is strictly increasing because α > 1. More
precisely, we can write

jk+1 = jk +mk,

with mk > 0 for all k and mk > 1 for infinitely many k.
We now construct a family of piecewise constant functions (fn)n>0 as follows. For each

n > 0, the distributional derivative of fn is a sum of Dirac masses:

f ′n = 2−n[
2n−1∑
m=0

δxn
m
]− δ1,

where the 2n jump points xnm ∈]0, 1[ will be specified in a moment. Since we subtract
δ1, these functions are supported on [0, 1]. Clearly |fn|BV(R) = 2 and ‖fn‖BV(R) ≤ 3,
independently of n.

If I is a dyadic interval, the wavelet coefficient cI of fn is given by

cI := 〈f ′n, hI〉 = 2−n
∑

m s.t. xn
m∈I

hI(x
n
m), (6.3)

where hI is the primitive function of ψ̃I , i.e., the hat function h(x) = (1− |x|)+ rescaled
to I.

We have not yet specified where to position the points xnm in ]0, 1[. We wish to place
them so that the right sum in (6.3) is large for many choices of I. For each k = 0, · · · , n,
we shall inductively construct 2k pairwise disjoint dyadic intervals Ik,l, l = 0, · · · , 2k − 1
of size |Ik,l| = 2−jk , and position the points xnm so that

Sk,l := {xnm}
2n−k(l+1)−1

m=2n−kl
⊂ Ik,l. (6.4)

We start the construction with I0,0 =]0, 1[, and for k = 1, · · · , n − 1 the construction
is continued using the following iteration: for a given Ik,l, we define Ik+1,2l and Ik+1,2l+1

as the two adjacent dyadic intervals of size 2−jk+1 which respectively admit the center of
Ik,l as their right and left endpoints. Iterating this construction, it suffices to choose each
point xnm in the corresponding interval In,m. In the case where mk > 1, we thus notice that
all the points in Sk,l are concentrated in a central region of Ik,l on which hIk,l

(x) ≥ 1/2,
so that according to (6.3) and (6.2) we then have

cIk,l
≥ 2−n−1#(Sk,l) = 2−k−1 ≥ 2−1−γ|Ik,l|γ.
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Therefore, if we fix ε = 1/4 < 2−1−γ, we see that for k < n such that mk > 1, we have∑
cI≥ε|I|γ ,|I|=2−jk

|I|γ = 2k2−γjk ≥ 1,

and thus ∑
cI≥ε|I|γ

|I|γ ≥ #{k s.t. k < n and mk > 1} = K(n).

Since limn→+∞K(n) = +∞, this shows that the weak estimate does not hold for 0 < γ <
1.

We shall now generalize the above counterexamples to the multidimensional case for
1 − 1/d ≤ γ ≤ 1 by using the following observations. If f is a one-dimensional BV(R)
function supported in [0, 1], then the multidimensional function

F (x1, · · · , xd) := f(x1)χ[0,1]d(x1, . . . , xd)

is in BV (Rd) with ‖F‖BV(Rd) ≤ C(d)‖f‖BV(R). Moreover if

I = I1 × · · · × Id

is a dyadic cube contained in ]0, 1[d, and if e = (1, 0, · · · , 0), we have

ψ̃eI(x1, · · · , xd) = ψ̃I1(x1)χI2×···×Id(x2, · · · , xd).

and therefore the wavelet coefficients ceI(F ) of F satisfy

ceI(F ) = 〈F, ψ̃eI〉 = |I|1−1/d〈f, ψ̃I1〉 = |I|1−1/dcI1(f).

It follows that ∑
|ceI(F )|≥ε|I|γ

|I|γ =
∑

I1 such that

|cI1 (f)| ≥ ε|I|γ+1/d−1

∑
(I2, · · · , Id) such that
I = I1 × · · · × Id

|I|γ

=
∑

I1 s.t. |cI1 (f)|≥ε|I1|γ̃
|I1|γ̃,

with γ = 1 − 1/d + γ̃/d. Applying these observations to the above one-dimensional
counter-examples for 0 ≤ γ̃ ≤ 1, we thus obtain our multidimensional counter-examples
for 1− 1/d ≤ γ ≤ 1.
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