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Abstract

This paper is concerned with the construction and analysis of a universal es-
timator for the regression problem in supervised learning. Universal means that
the estimator does not depend on any a priori assumptions about the regression
function to be estimated. The universal estimator studied in this paper consists of
a least-square fitting procedure using piecewise constant functions on a partition
which depends adaptively on the data. The partition is generated by a splitting
procedure which differs from those typically used in CART algorithms. It is proven
that this estimator performs at the optimal convergence rate for a wide class of
priors on the regression function. Namely, as will be made precise in the text, if
the regression function is in any one of a certain class of approximation spaces (or
smoothness spaces of order not exceeding one - a limitation resulting because the
estimator uses piecewise constants) measured relative to the marginal measure, then
the estimator converges to the regression function (in the least squares sense) with
an optimal rate of convergence in terms of the number of samples. The estimator
is also numerically feasible and can be implemented on-line.

1 Introduction

This paper addresses the problem of using empirical samples to derive probabilistic or
expectation error estimates for the regression function of some unknown probability mea-
sure ρ on a product space Z := X × Y . It will be assumed here that X is a bounded
domain of IRd and Y = IR. Given the data z = {z1, . . . , zm} ⊂ Z of m independent
random observations zi = (xi, yi), i = 1, . . . , m, identically distributed according to ρ,
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we are interested in estimating the regression function fρ(x) defined as the conditional
expectation of the random variable y at x:

fρ(x) :=

∫

Y

ydρ(y|x) (1.1)

with ρ(y|x) the conditional probability measure on Y with respect to x. In this paper, it
is assumed that this probability measure is supported on an interval [−M,M ] :

|y| ≤M, (1.2)

almost surely. It follows in particular that |fρ| ≤M .
We denote by ρX the marginal probability measure on X defined by

ρX(S) := ρ(S × Y ). (1.3)

We shall assume that ρX is a Borel measure on X. We have

dρ(x, y) = dρ(y|x)dρX(x). (1.4)

It is easy to check that fρ is the minimizer of the risk functional

E(f) :=

∫

Z

(y − f(x))2dρ, (1.5)

over f ∈ L2(X, ρX) where this space consists of all functions from X to Y which are
square integrable with respect to ρX . In fact one has

E(f) = E(fρ) + ‖f − fρ‖2, (1.6)

where
‖ · ‖ := ‖ · ‖L2(X,ρX). (1.7)

Our objective is therefore to find an estimator f
z

for fρ based on z such that the quantity
‖f

z
− fρ‖ is small.
A common approach to this problem is to choose an hypothesis (or model) class H

and then to define f
z
, in analogy to (1.5), as the minimizer of the empirical risk

f
z

:= argmin
f∈H

E
z
(f), with E

z
(f) :=

1

m

m
∑

i=1

(yi − f(xi))
2. (1.8)

Typically, H = Hm depends on a finite number N = N(m) of parameters. In many cases,
the number N is chosen using an a priori assumption on fρ. In other procedures, the
number N is adapted to the data and thereby avoids any a priori assumptions. We shall
be interested in estimators of the latter type.

The usual way of evaluating the performance of the estimator f
z

is by studying its
convergence either in probability or in expectation, i.e. the rate of decay of the quantities

Prob{‖fρ − f
z
‖ ≥ η}, η > 0 or E(‖fρ − f

z
‖2) (1.9)
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as the sample size m increases. Here both the expectation and the probability are taken
with respect to the product measure ρm defined on Zm. An estimation of the above
probability will automatically give an estimate in expectation by integrating with respect
to η. It is important to note that the measure ρX which appears in the norm (1.7)
is unknown and that we want to avoid any assumption on this measure. This type of
regression problem is referred to as distribution-free. A recent survey on distribution free
regression theory is provided in the book [18], which includes most existing approaches
as well as the analysis of their rate of convergence in the expectation sense. Significantly
less appears to be known about estimates in probability.

Estimates for the decay of the quantities in (1.9) are usually obtained under certain
assumptions (called priors) on fρ. Priors on fρ are typically expressed by a condition
of the type fρ ∈ Θ where Θ is a class of functions that necessarily must be contained
in L2(X, ρX). If we wish the error, as measured in (1.9), to tend to zero as the number
m of samples tends to infinity then we necessarily need that Θ is a compact subset of
L2(X, ρX).

There are three common ways to measure the compactness of a set Θ: (i) minimal
coverings, (ii) smoothness conditions on the elements of Θ, (iii) the rate of approximation
of the elements of Θ by a specific approximation process. In the learning problem, each
of these approaches has to deal with the fact that ρX is unknown.

To describe approach (i), for a given Banach space B which contains Θ, we define
the entropy number εn(Θ,B), n = 1, 2 . . ., as the minimal ε such that W can be covered
by at most 2n balls of radius ε in B. The set Θ is compact in L2(X, ρX) if and only
if εn(Θ, L2(X, ρX)) tends to zero as n → ∞. One can therefore quantify the level of
compactness of Θ by an assumption on the rate of decay of εn(Θ, L2(X, ρX)). A typical
prior condition would be to assume that the the entropy numbers satisfy

εn(Θ,B) ≤ Cn−r, n = 1, 2, · · · (1.10)

for some r > 0.
Coverings and entropy numbers have a long history in statistics for deriving optimal

bounds for the rate of decay in statistical estimation (see e.g. [5]). Several recent works
[8, 12, 20] have used this technique to bound the error for the regression problem in
learning. It has been communicated to us by Lucien Birgé that one can derive from one
of his forthcoming papers [4] that for any class Θ satisfying (1.10) with B = L2(X, ρX),
there is an estimator f

z
satisfying

E(‖fρ − f
z
‖2) ≤ Cm− 2r

2r+1 , m = 1, 2, . . . (1.11)

whenever fρ ∈ Θ. Lower bounds which match (1.11) have been given in [12] using a
slightly different type of entropy.

The estimators constructed using this approach are made through ε nets and are more
of theoretical interest (in giving the best possible bounds) but are not practical since ρX

is unknown and therefore these ε nets are also unknown. One can also use ε nets to give
bounds for Prob(‖fρ − f

z
‖). This is one of the main points in [8] and is carried further in

[12, 19, 20].
One way to circumvent the problem of not knowing the marginal ρX is to use coverings

in the space C(X) of continuous functions equiped with the uniform norm ‖ · ‖C(X) rather
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than in L2(X, ρX), since a good covering for Θ in C(X) gives bounds for the covering
in L2(X, ρX) independently of ρX . In this approach one would assume that Θ satisfies
(1.10) for B = C(X) and then build estimators which satisfy (1.11) using ε nets for C(X).
Again this does not lead to practical estimators. But the main deficiency of this approach
is that the assumption that Θ is a compact subset of C(X) is too severe and does not
give a full spectrum of compact subsets of L2(X, ρX).

Concerning (ii), it is well known that when ρX is the Lebesgue measure, the unit ball
of the Sobolev space W s(Lp) is a compact set of L2 if and only if s

d
> 1

p
− 1

2
. We recall that

when s is an integer, W s(Lp) consists of all Lp functions whose distributional derivatives
of order |α| ≤ s are also in Lp. It is a Banach space when equiped with the norm

‖f‖W s(Lp) := sup
|α|≤s

‖Dαf‖Lp. (1.12)

Similar remarks hold for Sobolev spaces with non-integer s, as well as for the Besov spaces
Bs

q(Lp) which offer a more refined description of the notion of r-differentiability in Lp.
We refer to [10] for the precise definition of such spaces.

However, there is no general approach to defining smoothness spaces with respect
to general Borel measures ρX which therefore precludes the direct use of classification
according to (ii). One way to circumvent this is to define smoothness in C(X), that is
systematically use the spaces W s(Lp) which compactly embed into C(X). but then this
suffers from the same deficiency of omitting many smoothness spaces that are compact
subsets of L2(X, ρX).

The classification of compactness according to approximation properties (iii) begins
with a specific method of approximation and then defines the classes Θ in terms of a rate of
approximation by the specified method. The simplest example is to take a sequence (Sn)
of linear spaces of dimension n and define Θ as the class of all functions f in L2(X, ρX)
which satisfy

inf
g∈Sn

‖f − g‖ ≤ Cαn (1.13)

where C is a fixed constant and (αn) is a sequence of positive real numbers tending to
zero. Natural choices for this sequence are αn = n−r, where r > 0. Classes defined in such
a way will not give a full spectrum of compact subsets in L2(X, ρX). But this deficiency
can be removed by using nonlinear spaces Σn in place of the linear spaces Sn (see the
discusssion in [12]). An illustrative example is approximation by piecewise polynomials
on partitions. If the partitions are set in advance this corresponds to the linear space
approximation above. In nonlinear methods the partitions are allowed to vary but their
size is specfied. We discuss this in more detail later in this paper. An in depth discussion
of the approximation theory approach to building estimators for the regression problem
in learning is given in [12] and the follow up papers [19] and [20].

We should mention that in classical settings, for example when ρX is Lebesgue measure
then the three approaches to measuring compactness are closely related and in a certain
sense equivalent. This is the main chapter of approximation theory.

Concrete algorithms have been constructed for the regression problem in learning by
using approximation from specific linear spaces such as piecewise polynomial on uniform
partitions, convolution kernels, and spline functions. The rate of convergence of the
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estimators built from such a linear approximation process is related to the approximation
rate of the corresponding process on the class Θ.

A very useful method for bounding the performance of such estimators is provided by
the following result in [18] (see Theorem 11.3): if H is taken as a linear space of dimension
N and if the least-square estimator (1.8) is post-processed by application of the truncation
operator y 7→ TM(y) = sign(y) min{|y|,M}, then

E(‖fρ − f
z
‖2) ≤ C

N log(m)

m
+ inf

g∈H
‖fρ − g‖2. (1.14)

From this, one can derive specific rates of convergence in expectation by balancing both
terms. For example, if Θ is a ball of the Sobolev space W r(L∞) and H is taken as a space
of piecewise polynomial functions of degree no larger than r − 1 on uniform partitions of
X, one derives

E(‖fρ − f
z
‖2) ≤ C(

m

logm
)−

2r
d+2r . (1.15)

This estimate is optimal for this class Θ, up to the logarithmic factor.
The above approach can be expanded to include methods of nonlinear approximation

as well. A simple example is n-term approximation by functions from a fixed basis Φ =
{φk}∞k=1 defined on X. We fix a positive number a > 1 and consider the space Σn

consisting of all functions S which can be written as a linear combination of at most n
of the basis function φk with 1 ≤ k ≤ na. Another way to describe the elements of Σn

is as elements of the
(

na

n

)

subspaces Ln obtained as the span of n elements chosen from
{φk}na

k=1. This type of nonlinear approximation is discussed in more detail in [12]. In this
setting one easily generalizes (1.15) to approximation from Σn.

The deficiency of the above approach is that it usually chooses the hypothesis classes
in advance and typically assumes knowledge of the prior for this choice. This deficiency
motivates the notion of adaptive or universal estimators. These are estimators which
exhibit the optimal rate for a wide class of priors Φ. A classical way to reach this goal is
to perform model selection by adding a complexity regularization term in the empirical
risk minimization process, see [2, 1, 5], Chapter 12 in [18], and [12].

We give a simple example of complexity regularization which will serve to illustrate
this technique. Let (Ln) be a sequence of linear spaces with Ln of dimension n which are
to be used as hypothesis classes. Given a data set z, we would like to choose one of these
spaces from which to approximate fρ, i.e. we wish to choose the dimension n(z). One
such choice is

n := n(z) := arg min
1≤j≤n

(E
z
(f

z,Lj
) +

Aj lnm

m
) (1.16)

where A > 1 is a fixed constant. Here, f
z,Lj

is the function from Lj which minimizes the
empirical error. With this choice of n(z), the function

f
z

:= TM(f
z,Ln(z)

(1.17)

is defined to be the estimator to fρ based on the data z. Here, TM is the truncation
operator TM (g)(x) := min(|g(x)|,M)signg(x) which is used in treating the variance.

It is proven in [18] (see Theorem 12.1) that the estimator (1.17) gives the optimal
decay in expectation (see (1.15)), save for a logarithmic factor, universally for all the
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classes defined by approximation as in (1.13) with αn = n−r, r > 0. In particular, taking
for each Ln, a space of piecewise polynomials of degree k on a uniform partition into cubes
gives an estimator which simultaneously obtains the optimal rate (1.15) for all finite balls
in each of the class W s(L∞), 0 < s ≤ k by the selection of an appropriate uniform
partition.

The same approach can be used to define estimators based on nonlinear approximation
which again give optimal (save for logarithms) rates of convergence on more general classes
of functions.

Fixing this deficiency means that in the special case where the marginal ρX is Lebesgue
measure, the estimator would necessarily have to be optimal for all Sobolev and Besov
classes which compactly embed into L2(X, ρX). These spaces correspond to smoothness
spaces of order r in Lp whenever r > d

p
− d

2
(see [10]). This can be achieved by introducing

spatially adaptive partitions. The selection of an appropriate adaptive partition in the
complexity regularization framework can be implemented by the CART algorithm [6],
which limits the search to a set of admissible partitions based on a tree structured splitting
rule.

A practical limitation of the above described complexity regularization approach is
that it is not generally compatible with the practical requirement of on-line computations,
by which we mean that the estimator for the sample size m can be derived by a simple
update of the estimator for the sample size m− 1, since the minimization problem needs
to be globally re-solved when adding a new sample.

In two slightly different contexts, namely density estimation and denoising on a fixed
design, estimation procedures based on wavelet thresholding have been proposed as a
natural alternative to model selection by complexity regularization [14, 15, 16, 17]. These
procedures are particularly attractive since they combine optimal convergence rates for
the largest possible array of unknown priors together with simple and fast algorithms
which are on-line implementable. In the learning theory context, the wavelet thresholding
has also been used in [11] for estimation of a modification of the regression function fρ,
namely, for estimating (dρX/dx)fρ, where ρX is assumed to be absolutely continuous with
regard to the Lebesgue measure. The main difficulty in generalizing such procedures to
the distribution-free regression context is due to the presence of the marginal probability
ρX in the L2(X, ρX) norm. This typically leads to the need of using wavelet-type bases
which are orthogonal (or biorthogonal) with respect to this inner product. Such bases
might be not easy to handle numerically and cannot be constructed exactly since ρX is
unknown.

In this paper, we propose an approach which allows us to circumvent these difficulties,
while staying in spirit close to the ideas of wavelet thresholding. In our approach, the
hypothesis classes H are spaces of piecewise constant functions associated to adaptive
partitions Λ. Our partitions have the same tree structure as those used in the CART
algorithm [6], yet the selection of the appropriate partition is operated quite differently
since it is not based on an optimization problem which would have to be re-solved when a
new sample is added: instead our algorithm selects the partition through a thresholding
procedure applied to empirical quantities computed at each node of the tree which play a
role similar to wavelet coefficients. While the connection between CART and thresholding
in one or several orthonormal bases is well understood in the fixed design denoising context
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[13], this connection is not clear to us in our present context. As it will be demonstrated,
our estimation schemes enjoy the following properties:

(i) They rely on fast algorithms, which may be implemented by simple on-line updates
when the sample size m is increased.

(ii) The error estimates do not require any regularity in C(X) but only in the natural
space L2(X, ρX).

(iii) The proven convergence rates are optimal in probability and expectation (up to
logarithmic factors) for the largest possible range of smoothness classes in L2(X, ρX).

(iv) The scheme is universal in that it does not involve any a-priori knowledge concerning
the regularity of fρ.

The present choice of piecewise constant functions limits the optimal convergence
rate to classes of low or no pointwise regularity. While the practical extension of our
method to higher order piecewise polynomial approximations is almost straightforward,
its analysis in this more general context becomes significantly more difficult and will
be given in a forthcoming paper. This is so far a weakness of our approach from the
theoretical perspective, compared to the complexity regularization approach for which
optimal convergence results could be obtained in the piecewise polynomial context, using
for instance Theorem 12.1 in [18].

Our paper is organized as follows. The learning algorithm as well as the convergence
results are described in section 2. The next two sections 3 and 4 are devoted to the proofs
of the two main results which deal respectively with the error estimates for non-adaptive
and adaptive partitions.

2 The basic strategy and the main results

2.1 Partitions and adaptive approximation

A typical way of generating partitions Λ of X is through a refinement strategy. We
first describe the prototypical example of dyadic partitions. For this, we assume that
X = [0, 1]d and denote by Dj = Dj(X) the collection of dyadic subcubes ofX of sidelength
2−j and D := ∪∞

j=0Dj. These cubes are naturally aligned on a tree T = T (D). Each node
of the tree T is a cube I ∈ D. If I ∈ Dj, then its children are the 2d dyadic cubes of
J ⊂ Dj+1 with J ⊂ I. We denote the set of children of I by C(I). We call I the parent
of each such child J and write I = P(J). The cubes in Dj(X) form a uniform partition
in which every cube has the same measure 2−jd.

More general adaptive partitions are defined as follow. A proper subtree T̃ of T is a
collection of nodes of T with the properties: (i) the root node I = X is in T̃ , (ii) if I 6= X
is in T̃ then its parent P(I) is also in T̃ . Any finite proper subtree T̃ is associated to
a unique partition Λ = Λ(T̃ ) which consists of its outer leaves, by which we mean those
J ∈ T such that J /∈ T̃ but P(J) is in T̃ . One way of generating adaptive partitions
is through some refinement strategy. One begins at the root X and decides whether to
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refine X (i.e. subdivide X) based on some refinement criteria. If X is subdivided then
one examines each child and decides whether or not to refine such a child based on the
refinement strategy.

The results given in this paper can be described for more general refinement. We shall
work in the following setting. We assume that a ≥ 2 is a fixed integer. We assume that if
X is to be refined then its children consist of a subsets of X which are a partition of X.
Similarly, for each such child there is a rule which spells out how this child is refined. We
assume that the child is also refined into a sets which form a partition of the child. Such a
refinement strategy also results in a tree T (called the master tree) and children, parents,
proper trees and partitions are defined as above for the special case of dyadic partitions.
The refinement level j of a node is the smallest number of refinements (starting at root)
to create this node. We denote by Tj the proper subtree consisting of all nodes with level
< j and we denote by Λj the partition associated to Tj , which coincides with Dj(X) in the
above described dyadic partition case. Note that in contrast to this case, the a children
may not be similar in which case the partitions Λj are not spatially uniform (we could
also work with even more generality and allow the number of children to depend on the
cell to be refined, while remaining globally bounded by some fixed a). It is important
to note that the cardinalities of a proper tree T̃ and of its associated partition Λ(T̃ ) are
equivalent. In fact one easily checks that

#(Λ(T̃ )) = (a− 1)#(T̃ ) + 1, (2.1)

by remarking that each time a new node gets refined in the process of building an adaptive
partition, #(T̃ ) is incremented by 1 and #(Λ) by a− 1.

Given a partition Λ, let us denote by SΛ the space of piecewise constant functions
subordinate to Λ. Each S ∈ SΛ can be written

S =
∑

I∈Λ

aIχI , (2.2)

where for G ⊂ X we denote by χG the indicator function, i.e. χG(x) = 1 for x ∈ G and
χG(x) = 0 for x 6∈ G. We shall consider approximation of a given function f ∈ L2(X, ρX)
by the elements of SΛ. The best approximation to f in this space is given by

PΛf :=
∑

I∈Λ

cIχI (2.3)

where cI = cI(f) is given by

cI :=
αI

ρI
, with αI :=

∫

I

fdρX and ρI := ρX(I). (2.4)

In the case where ρI = 0, both fρ and its projection are undefined on I. For notational
reasons, we set in this case cI := 0.

We shall be interested in two types of approximation corresponding to uniform refine-
ment and adaptive refinement. We first discuss uniform refinement. Let

En(f) := ‖f − PΛnf‖, n = 0, 1, . . . (2.5)
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which is the error for uniform refinement. The decay of this error to zero is connected with
the smoothness of f as measured in L2(X, ρX). We shall denote by As the approximation
class consisting of all functions f ∈ L2(X, ρX) such that

En(f) ≤M0a
−ns, n = 0, 1, . . . . (2.6)

Notice that #(Λn) = an so that the decay in (2.6) is like N−s with N the number of
elements in the partition. The smallest M0 for which (2.6) holds serves to define the
semi-norm |f |As on As. The space As can be viewed as a smoothness space of order s > 0
with smoothness measured with respect to ρX .

For example, if ρX is the Lebesgue measure and we use dyadic partitioning then
As/d = Bs

∞(L2), 0 < s ≤ 1, with equivalent norms. Here Bs
∞(L2) is the Besov space

which can be described in terms of differences as

||f(· + h) − f(·)‖L2 ≤ M0|h|s, x, h ∈ X. (2.7)

Instead of working with a-priori fixed partitions there is a second kind of approximation
where the partition is generated adaptively and will vary with f . Adaptive partitions are
typically generated by using some refinement criterion that determines whether or not to
subdivide a given cell. We shall use a refinement criteria that is motivated by adaptive
wavelet constructions such as those given in [7] for image compression. The criteria we
shall use to decide when to refine is analogous to thresholding wavelet coefficients. Indeed,
it would be exactly this criteria if we were to construct a wavelet (Haar like) bases for
L2(X, ρX).

For each cell I in the master tree T and any f ∈ L2(X, ρX) we define

εI(f)2 :=
∑

J∈C(I)

(

∫

J

fdρX

)2

ρJ
−

(

∫

I

fdρX

)2

ρI
, (2.8)

which describes the amount of L2(X, ρX) energy which is increased in the projection of
fρ onto SΛ when the element I is refined. It also accounts for the decreased projection
error when I is refined. In fact, one easily verifies that

εI(f)2 = ‖f − cI‖2
L2(I,ρX) −

∑

J∈C(I)

‖f − cJ‖2
L2(J,ρX). (2.9)

If we were in a classical situation of Lebesgue measure and dyadic refinement, then εI(f)2

would be exactly the sum of squares of the Haar coefficients of f corresponding to I.
We can use εI(f) to generate an adaptive partition. Given any η > 0, we let T (f, η)

be the smallest proper tree that contains all I ∈ T for which εI(f) ≥ η. This tree can
also be described as the set of all J ∈ T such that there exists I ⊂ J such that εI(f) ≥ η.
Note that since f ∈ L2(X, ρX) the set of nodes such that εI(f) ≥ η is always finite and
so is T (f, η). Corresponding to this tree we have the partition Λ(f, η) consisting of the
outer leaves of T (f, η). We shall define some new smoothness spaces Bs which measure
the regularity of a given function f by the size of the tree T (f, η).
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Given s > 0, we let Bs be the collection of all f ∈ L2(X, ρX) such that the following
is finite

|f |pBs := sup
η>0

ηp#(T (f, η)), where p := (s+ 1/2)−1 (2.10)

We obtain the norm for Bs by adding ‖f‖ to |f |Bs. One can show that

‖f − PΛ(f,η)‖ ≤ Cs|f |
1

2s+1

Bs η
2s

2s+1 ≤ Cs|f |BsN−s, N := #(T (f, η)), (2.11)

where the constant Cs depends only on s. For the proof of this fact we refer the reader
to [7] where a similar result is proven for dyadic partitioning. It follows that every
function f ∈ Bs can be approximated to order O(N−s) by PΛf for some partition Λ
with #(Λ) = N . This should be contrasted with As which has the same approximation
order for the uniform partition. It is easy to see that Bs is larger than As. In classical
settings, the class Bs is well understood. For example, in the case of Lebesgue measure
and dyadic partitions we know that each Besov space Bs

q(Lτ ) with τ > (s/d+1/2)−1 and

0 < q ≤ ∞ arbitrary, is contained in Bs/d (see [7]). This should be compared with the As

where we know that As/d = Bs
∞(L2) as we have noted earlier.

The distinction between these two forms of approximation is that in the first, the
partitions are fixed in advance regardless of f but in the second form the partition can
adapt to f .

We have chosen here one particular refinement strategy (based on the size of εI(f)) in
generating our adaptive partitions. According to (2.11), it provides optimal convergence
rates for the class Bs. There is actually a slightly better strategy described in [3] which
is guaranteed to give near optimal adaptive partitions (independent of the refinement
strategy and hence not necessarily of the above form) for each individual f . We have
chosen to stick with the present refinement strategy since it extends easily to empirical
data (see §2.2) and it is much easier to analyze the convergence properties of this empirical
scheme.

2.2 Least-squares fitting on partitions

We now return to the problem of estimating fρ from the given data. We shall use the
functions in SΛ for this purpose. Let us first observe that

PΛfρ = argmin
f∈SΛ

E(f) = argmin
f∈SΛ

∫

Z

(y − f(x))2dρ. (2.12)

Indeed, for all f ∈ L2(X, ρX) we have

E(f) = E(fρ) + ‖f − fρ‖2 (2.13)

so that minimizing E(f) over SΛ is the same as minimizing ‖fρ − f‖ over f ∈ SΛ. Note
that PΛfρ is obtained by solving N independent problems minc∈R

∫

I

(fρ − c)2dρX for each

element I ∈ Λ.
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As in (1.8) we define the estimator f
z,Λ of fρ on SΛ as the empirical counterpart of

PΛfρ obtained as the solution of the least-squares problem

f
z,Λ := argmin

f∈SΛ

E
z
(f) = argmin

f∈SΛ

1

m

m
∑

i=1

(yi − f(xi))
2. (2.14)

We can view our data as a multivalued function y with y(xi) = yi. Then in analogy
to PΛfρ, we can view f

z,Λ as an orthogonal projection of y onto SΛ with respect to the
empirical norm

‖y‖2
L2(X,δX ) :=

1

m

m
∑

i=1

|y(xi)|2, (2.15)

and we can compute it by solving #(Λ) independent problems

min
c∈R

1

m

m
∑

i=1

(yi − c)2χI(xi), (2.16)

for each element I ∈ Λ. The minimizer cI(z) is now given by the empirical average

cI(z) =
αI(z)

ρI(z)
, where αI(z) :=

1

m

m
∑

i=1

yiχI(xi), ρI(z) :=
1

m

m
∑

i=1

χI(xi). (2.17)

Thus, we can rewrite the estimator as

f
z,Λ =

∑

I∈Λ

cI(z)χI . (2.18)

In the case where I contains no sample xi (which may happen even if ρI > 0), we set
cI(z) := 0.

A natural way of assessing the error ‖fρ − f
z,Λ‖ is by splitting it into a bias and

stochastic part : since fρ − PΛfρ is orthogonal to SΛ,

‖fρ − f
z,Λ‖2 = ‖fρ − PΛfρ‖2 + ‖PΛfρ − f

z,Λ‖2 =: e1 + e2. (2.19)

Concerning the variance term e2, we shall establish the following probability estimate.

Theorem 2.1 For any partition Λ and any η > 0,

Prob {‖PΛfρ − f
z,Λ‖ > η} ≤ 4Ne−c mη2

N , (2.20)

where N := #(Λ) and c depends only on M .

As will be explained later in detail, the following estimate of the variance term in
expectation is obtained by integration of over η > 0.

Corollary 2.2 If Λ is any partition, the mean square error is bounded by

E
(

‖PΛfρ − f
z,Λ‖2

)

≤ C
N logN

m
, (2.21)

where N := #(Λ) and the constant C depends only on M .
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Let us consider now the case of uniform refinement. We can equilibrate the bias
term with the variance term described by Theorem 2.1 and Corollary 2.2 and obtain the
following result.

Theorem 2.3 Assume that fρ ∈ As and define the estimator f
z

:= f
z,Λj

with j chosen as

the smallest integer such that aj(1+2s) ≥ m
log m

. Then, given any β > 0, there is a constant

c̃ = c̃(M,β, a) such that

Prob

{

‖fρ − f
z
‖ > (c̃+ |fρ|As)

( logm

m

)
s

2s+1

}

≤ Cm−β, (2.22)

and

E
(

‖fρ − f
z
‖2

)

≤ (C + |fρ|2As)
( logm

m

)
2s

2s+1
. (2.23)

where C depends only on a and M .

Remark 2.4 It is also possible to prove Corollary 2.2 using Theorem C* of [8]. The
expectation estimate (2.23) in Theorem 2.3 can also be obtained as a consequence of
Theorem 11.3 in [18] quoted in our introduction. In order to prepare for the subsequent
developments direct proofs of these results are given later in §3.

Theorem 2.3 is satisfactory in the sense that it is obtained under no assumption
on the measure ρX and the assumption fρ ∈ As is measuring smoothness (and hence
compactness) in L2(X, ρX), i.e. the compactness assumption is done in L2(ρX) rather
than in L∞. Moreover, the rate ( m

log m
)−

s
2s+1 is known to be optimal (or minimax) over the

class As save for the logarithmic factor. However, it is unsatisfactory in the sense that
the estimation procedure requires the a-priori knowledge of the smoothness parameter
s which appears in the choice of the resolution level j. Moreover, as noted before, the
smoothness assumption fρ ∈ As is too severe.

In the context of density estimation or denoising, it is well known that adaptive meth-
ods based on wavelet thresholding [14, 15, 16, 17] allow one to treat both defects. Our
next goal is to define similar strategies in our learning context, in which two specific fea-
tures have to be taken into account : the error is measured in the norm L2(X, ρX) and
the marginal probability measure ρX is unknown.

2.3 A universal algorithm based on adaptive partitions

The main feature of our algorithm is to adaptively choose a partition Λ = Λ(z) depending
on the data z. It will not require a priori knowledge of the smoothness of fρ but rather
will learn the smoothness from the data. Thus, it will automatically choose the right size
for the partition Λ.

Our starting point is the adaptive procedure introduced in §2.1 applied to the function
fρ. We use the notation εI := εI(fρ) in this case. Then, by (2.8),

ε2
I :=

∑

J∈C(I)

α2
J

ρJ
− α2

I

ρI
. (2.24)
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The selection of the partition Λ in our learning scheme will be based on the empirical
coefficients

ε2
I(z) :=

∑

J∈C(I)

α2
J(z)

ρJ(z)
− α2

I(z)

ρI(z)
. (2.25)

We define the threshold

τm := κ

√

logm

m
, (2.26)

where the constant κ is absolute and will be fixed later in the proof of Theorem 2.5
stated below. Let γ > 0 be an arbitrary but fixed constant. We define j0 = j0(m, γ) as

the largest integer j such that aj ≤ τ
−1/γ
m . We next consider the smallest propert tree

T (z, m) which contains the set

Σ(z, m) := {I ∈ Tj0 ; εI(z) ≥ τm}. (2.27)

This tree can also be described as the set of all J ∈ Tj0 such that there exists I ⊂ J
such that I ∈ Σ(z, m). We then define the partition Λ = Λ(z, m) associated to this tree
and the corresponding estimator f

z
:= fΛ,z. In summary, our algorithm consists in the

following steps:

(i) Compute the εI(z) for the nodes I of generation j < j0.

(ii) Threshold these quantities at level τm to obtain the set Σ(z, m).

(iii) Complete Σ(z, m) to T (z, m) by adding the nodes J which contain an I ∈ Σ(z, m).

(iv) Compute the estimator f
z

by empirical risk minimization on the partition Λ(z, m).

Further comments on the implementation will be given in the next section. The main
result of this paper is the following theorem.

Theorem 2.5 Let β, γ > 0 be arbitrary. Then, there exists κ0 = κ0(β, γ,M) such that if
κ ≥ κ0, then whenever fρ ∈ Aγ ∩Bs for some s > 0, the following concentration estimate
holds

Prob

{

‖fρ − f
z
‖ ≥ c̃

( logm

m

)
s

2s+1

}

≤ Cm−β , (2.28)

as well as the following expectation bound

E(‖fρ − f
z
‖2) ≤ C

( logm

m

)
2s

2s+1
, (2.29)

where the constants c̃ and C are independent of m.

Theorem 2.5 is more satisfactory than Theorem 2.3 in two respects: (i) the optimal
rate ( log m

m
)

s
2s+1 is now obtained under weaker smoothness assumptions on the regression

function, namely, fρ ∈ Bs in place of fρ ∈ As, with the extra assumption of fρ ∈ Aγ

smoothness with γ > 0 arbitrarily small, (ii) the algorithm is universal. Namely, the value
of s does not enter the definition of the algorithm. Indeed, the algorithm automatically
exploits this unknown smoothness through the samples z. We note however that the
algorithm does require the knowledge of the parameter γ which can be arbitrarily small.
It is actually possible to build an algorithm without assuming knowledge of a γ > 0
by using the adaptive tree algorithm in [3]. However, the implementation of such an
algorithm would involve complications we wish to avoid in this presentation.
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2.4 Remarks on algorithmic aspects and on-line implementation

Our first remarks concern the construction of the adaptive partition Λ(z, m) for a fixed
m which requires the computation of the numbers εI(z) for I ∈ Λj when j satisfies

aj ≤ τ
−1/γ
m . This would require the computation of O(m lnm) coefficients. One can

actually save a substantial amount of computation by remarking that by definition we
always have

εI(z)2 ≤ EI(z) (2.30)

with EI(z) := ‖y − cI(z)‖2
L2(δX ,I) the least-square error on I. In contrast to εI(z), the

quantity EI(z) is monotone with respect to inclusion:

J ⊂ I ⇒ EJ(z) ≤ EI(z). (2.31)

This allows one to organize the search for those I satisfying εI(z) ≥ τm from coarse to
fine elements. In particular, one no longer has to check those descendants of an element
I for which EI(z) is less than τm.

Our next remarks concern the on-line implementation of the algorithm. Suppose that
we have computed ρI(z), αI(z) and the εI(z) where z contains m samples. If we now add
a new sample (xm+1, ym+1) to z to obtain z+, the new ρI and αI are

ρI(z
+) =

m

m+ 1
(ρI(z) + χI(xm+1)) (2.32)

and
αI(z

+) =
m

m+ 1
(αI(z) + ym+1χI(xm+1)). (2.33)

In particular, we see that at each level j, only one I is affected by the new sample.
Therefore, if we store the quantities ρI(z) and αI(z) in the current partition, then this
new step requires at most j0 additional computations in the case where j0 is not increased.
In the case where j0 is increased to j0 +1 (this may happen because τm is decreased), the
computations of the quantities ρI(z) and αI(z) need to be performed, of course, for all
the elements in the newly added level.

3 Proof of the results on non-adaptive partitions

We first give the proof of Theorem 2.1. Let Λ be any partition. By (2.3) and (2.18), we
can write

‖PΛfρ − fΛ,z‖2 =
∑

I∈Λ

|cI − cI(z)|2ρI . (3.1)

According to their definitions (2.4), (2.17), both cI and cI(z) are bounded in modulus by
M . Therefore, given η > 0, if we define

Λ− := {I ∈ Λ : ρI ≤ η2

8NM2
}, (3.2)

we clearly have
∑

I∈Λ−

|cI − cI(z)|2ρI ≤ η2

2
. (3.3)
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We next consider the complement set Λ+ = Λ \ Λ−. In order to prove (2.20), it now
suffices to establish that for all I ∈ Λ+

Prob

{

|cI(z) − cI |2 ≥
η2

2NρI

}

≤ 4e−c mη2

N . (3.4)

To see this, we write ρI(z) = (1 + µI)ρI and remark that if |µI | ≤ 1/2 we have

|cI(z) − cI | =

∣

∣

∣

∣

αI(z)

ρI(z)
− αI

ρI

∣

∣

∣

∣

=
1

ρI(1 + µI)
|αI(z) − αI − µIαI |

≤ 2ρ−1
I (|αI(z) − αI | + |αIµI |). (3.5)

It follows that |cI(z) − cI | ≤ η√
2NρI

provided that we have jointly

|αI(z) − αI | ≤
η
√
ρI

4
√

2N
, (3.6)

and (since αIµI = αI(ρI(z) − ρI)/ρI)

|ρI(z) − ρI | ≤ min

{

1

2
ρI ,

ηρ
3/2
I

4
√

2N |αI |

}

(3.7)

and therefore

Prob

{

|cI(z) − cI |2 ≥
η2

2NρI

}

≤ Prob

{

|αI(z) − αI | ≥
η
√
ρI

4
√

2N

}

+ Prob

{

|ρI(z) − ρI | ≥ min

{

1

2
ρI ,

ηρ
3/2
I

4
√

2N |αI |

}}

.

In order to estimate these probabilities, we shall use Bernstein’s inequality which says
that form independent realizations ζi of a random variable ζ such that |ζ(z)−E(ζ)| ≤M0

and Var(ζ) = σ2, one has for any ε > 0

Prob

{
∣

∣

∣

∣

∣

1

m

m
∑

i=1

ζ(zi) − E(ζ)

∣

∣

∣

∣

∣

≥ ε

}

≤ 2e
− mε2

2(σ2+M0ε/3) . (3.8)

In our context, we apply this inequality to ζ = yχI(x) for which E(ζ) = αI , M0 ≤ 2M
and σ2 ≤ M2ρI , and to ζ = χI(x) for which E(ζ) = ρI , M0 ≤ 1, and σ2 ≤ ρI .

We first obtain that

Prob

{

|αI(z) − αI | ≥
η
√
ρI

4
√

2N

}

≤ 2e
− mη2ρI

64N(M2ρI+2Mη
√

ρI/2N/12)

≤ 2e
− mη2ρI

64N(M2ρI+4M2ρI/12)

≤ 2e−c mη2

N ,
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with c = [256
3
M2]−1, where we have used in the second inequality that I ∈ Λ+ to bound the

second term in the denominator of the exponential by the first term in the denominator.

We next obtain in the case where 1
2
ρI ≤ ηρ

3/2
I

4
√

2N |αI |

Prob

{

|ρI(z) − ρI | ≥
1

2
ρI

}

≤ 2e
− mρ2

I
8(ρI+ρI/6) = 2e−

3
28

mρI ≤ 2e−c mη2

N

with c = [224
3
M2]−1 where we have used in the last line that I ∈ Λ+. Finally, in the case

where 1
2
ρI ≥ ηρ

3/2
I

4
√

2N |αI |
, we obtain

Prob

{

|ρI(z) − ρI | ≥
ηρ

3/2
I

4
√

2NρI |αI |

}

≤ 2e
− mη2ρ3

I
64NρI |αI |2(7ρI/6) ≤ 2e−c mη2

N

with c = [448
6
M2]−1 since |αI | ≤MρI . Therefore, we obtain (3.4) with the smallest of the

three values of c namely c = [256
3
M2]−1, which concludes the proof of Theorem 2.1.

Remark 3.1 The constant c in the estimate behaves like 1/M2 and therefore degenerates
to 0 as M → +∞. This is due to the fact that we are using Bernstein’s estimate as
a concentration inequality since we are lacking any other information on the conditional
law ρ(y|x). For more specific models where we have more information on the conditional
law ρ(y|x), one can avoid the limitation |y| ≤ M . For instance, in the Gaussian regres-
sion problem yi = fρ(xi) + gi where gi are i.i.d. Gaussian (and therefore unbounded)
variables N (0, σ2), the probabilistic estimate (2.20) can be obtained by a direct use of the
concentration property of the gaussian.

The proof of Corollary 2.2 follows by integration of (2.20) over η:

E
(

‖PΛfρ − fΛ,z‖2
L2(X,ρX )

)

=
+∞
∫

0

η Prob
{

‖PΛfρ − fΛ,z‖L2(ρX) > η
}

dη

≤
+∞
∫

0

ηmin{1, 4Ne−c mη2

N }dη

=
η0
∫

0

η dη +
+∞
∫

η0

4Nη e−c mη2

N dη

=
η2
0

2
+ 2N2

cm
e−c

mη2
0

N ,

where η0 is such that 4Ne−c
mη2

0
N = 1, or equivalently η2

0 = N log(4N)
cm

. This proves the
estimate (2.21).

Finally, to prove the estimates in Theorem 2.3, we first note that, by assumption,

N = #(Λj) ≤ aj+1 ≤ a2
(

m
log m

)
1

2s+1

. Further, from the definition of As, we have

‖fρ − PΛjfρ‖ ≤ |fρ|Asa−js ≤ |fρ|As

(

logm

m

)
s

2s+1

. (3.9)
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Hence, using Theorem 2.1, we see that the probability on the left of (2.22) is bounded
from above by

Prob

{

‖PΛfρ − fΛ,z‖ > c̃

(

logm

m

)
s

2s+1

}

≤ 4a2me−
cc̃2 log m

a2 (3.10)

which does not exceed Cm−β provided c̃2c > a2(1 + β). The proof of (2.23) follows in a
similar way from Corollary 2.2.

4 Proof of Theorem 2.5

The remainder of this paper is devoted to a proof of Theorem 2.5. We begin with our
notation. Recall that the tree T (fρ, η) is the smallest tree which contains all I for which
εI = εI(fρ) is larger than η. Λ(fρ, η) is the partition induced by the outer leaves of
T (fρ, η). We use τm as defined in (2.26) and j0 = j0(m) is the largest integer such that

aj0 ≤ τ
−1/γ
m . For any partition Λ we write f

z,Λ =
∑

I∈Λ cI(z)χI .
If Λ0 and Λ1 are two adaptive partitions respectively associated to trees T0 and T1

we denote by Λ0 ∨ Λ1 and Λ0 ∧ Λ1 the partitions associated to the trees T0 ∪ T1 and
T0 ∩ T1, respectively. Given any η > 0, we define the partitions Λ(η) := Λ(fρ, η) ∧ Λj0

and Λ(η, z) associated with the smallest trees containing those I such that εI ≥ η and
εI(z) ≥ η, respectively, and such that the refinement level j of any I in either one of these
two partitions satisfies j ≤ j0. In these terms our estimator f

z
is given by

f
z

= f
z,Λ(τm,z). (4.1)

With this notation in hand, we begin now with the proof of the Theorem. Using the
triangle inequality, we have

‖fρ − f
z,m‖ ≤ e1 + e2 + e3 + e4 (4.2)

with each term defined by

e1 := ‖fρ − PΛ(τm,z)∨Λ(bτm)fρ‖,
e2 := ‖PΛ(τm,z)∨Λ(bτm)fρ − PΛ(τm,z)∧Λ(τm/b)fρ‖,
e3 := ‖PΛ(τm,z)∧Λ(τm/b)fρ − f

z,Λ(τm,z)∧Λ(τm/b)‖,
e4 := ‖f

z,Λ(τm,z)∧Λ(τm/b) − f
z,Λ(τm,z)‖,

with b := 2
√
a− 1 > 1. This type of splitting is classically used in the analysis wavelet

thresholding procedures, in order to deal with the fact that the partition built from those I
such that εI(z) ≥ τm does not exactly coincides with the partition which would be chosen
by an oracle based on those I such that εI ≥ τm. This is accounted by the terms e2 and
e4 which correspond to those I such that εI(z) is significantly larger or smaller than εI

respectively, and which will be proved to be small in probability. The remainding terms
e1 and e3 respectively correspond to the bias and variance of oracle estimators based on
partitions obtained by thresholding the unknown coefficients εI .
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The first term e1 is therefore treated by a deterministic estimate. Namely, since
Λ(τm, z) ∨ Λ(bτm) is a finer partition than Λ(bτm), we have with probability one

e1 ≤ ‖fρ − PΛ(bτm)fρ‖ ≤ ‖fρ − PΛ(fρ,bτm)fρ‖ + ‖PΛ(fρ,bτm)fρ − PΛ(bτm)fρ‖
≤ ‖fρ − PΛ(fρ,bτm)fρ‖ + ‖fρ − PΛj0

fρ‖
≤ Cs(bτm)

2s
2s+1 |fρ|Bs + a−γj0 |fρ|Aγ

≤ Cs(bτm)
2s

2s+1 |fρ|Bs + aγτm|fρ|Aγ .

Therefore we conclude that

e1 ≤ Cs((bκ)
2s

2s+1 + aγκ)max{|fρ|Aγ , |fρ|Bs}
( logm

m

)
s

2s+1
, (4.3)

whenever f ∈ Bs ∩Aγ.
The third term e3 is treated by the estimate (2.20) of Theorem 2.1:

Prob{e3 > η} ≤ 4Ne−c mη2

N , (4.4)

with
N = #(Λ(τm, z) ∧ Λ(τm/b)) ≤ #(Λ(τm/b)) ≤ #(Λ(fρ, τm/b)).

Hence we infer from (2.10) that

N ≤ bpτ−p
m |fρ|pBs = bpτ

− 2
2s+1

m |fρ|pBs = bpκ−
2

2s+1 |fρ|pBs

( m

logm

)
1

2s+1
, (4.5)

where we have used that 1/p = 1/2 + s.
Concerning the two remaining terms e2 and e4, we shall prove that for a fixed but

arbitrary β > 0, we have

Prob{e2 > 0} + Prob{e4 > 0} ≤ Cm−β, (4.6)

whenever κ ≥ κ0 with κ0 depending on β, γ, and M and with C depending only on a.
Before proving this result, let us show that the combination (4.3), (4.4),(4.5) and (4.6)

imply the validity of the estimates (2.28) and (2.29) in Theorem 2.5. We fix the value
of β and we fix any constant κ for which (4.6) holds. Let η1 := c̃( log m

m
)

s
2s+1 with c̃ from

(2.28) and η2 := c0(
log m

m
)

s
2s+1 with c0 := Cs(κ

2s
2s+1 + aγκ) max {|fρ|Aγ , |fρ|Bs}. From (4.3)

it follows that for c̃ > c0 we have Prob{‖fρ − f
z,m‖ > η1} ≤ Prob{e2 + e3 + e4 > η1 − η2}.

Hence, defining η = (c̃− c0)(
log m

m
)

s
2s+1 , the probability on the left side of (2.28) does not

exceed

Prob{e2 > 0} + Prob{e3 > η} + Prob{e4 > 0} ≤ Prob{e3 > η} + Cm−β ,

Moreover, on account of (4.4) and (4.5), we can estimate Prob{e3 > η} by

Prob{e3 > η} ≤ C
( m

logm

)
1

2s+1
e
−cmη2b−pκ

− 2
2s+1 |fρ|−p

Bs

(

log m
m

) 1
2s+1
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= C
( m

logm

)
1

2s+1
e
−cD2m

(

log m
m

)

= C
( m

logm

)
1

2s+1
m−cD2

≤ Cm1−cD2

where D2 := (c̃−c0)2

κ
2

2s+1 bp|f |pBs

. The concentration estimate (2.28) follows now by taking c̃ large

enough so that 1 − cD2 + β ≤ 0.
For the expectation estimate (2.29), we recall that according to Corollary 2.2, we have

E(e23) ≤ C
N logN

m
≤ C

(

m
log m

)
1

2s+1
logm

m
= C

( logm

m

)
2s

1+2s
. (4.7)

We then remark that we always have e22 ≤ 4M2, and therefore

E(e22) ≤ 4M2Prob{e2 > 0} ≤ Cm−β ≤ C
( m

logm

)− 2s
2s+1

, (4.8)

by choosing β larger than 2s/(2s + 1), for example β = 1. The same holds for e4 and
therefore we obtain (2.29).

It remains to prove (4.6). The main tool here is a probabilistic estimate of how
the empirical coefficient εI(z) may differ from εI with respect to the threshold. This is
expressed by the following lemma.

Lemma 4.1 For any η > 0 and any element I ∈ T , one has

Prob{εI(z) ≤ η and εI ≥ bη} ≤ Ce−cmη2

(4.9)

and
Prob{εI ≤ η and εI(z) ≥ bη} ≤ Ce−cmη2

(4.10)

where the constant c depends only on M and the constant C depends only on a.

Before proving Lemma 4.1, let us show how this results implies (4.6). We first consider
the second term e2. Clearly e2 = 0 if Λ(τm, z)∨Λ(bτm) = Λ(τm, z)∧Λ(τm/b) or equivalently
T (τm, z) ∪ T (bτm) = T (τm, z) ∩ T (τm/b). Now if the inclusion T (τm, z) ∩ T (τm/b) ⊂
T (τm, z)∪T (bτm) is strict, then one either has T (τm, z) 6⊂ T (τm/b) or T (bτm) 6⊂ T (τm, z).
Thus, there either exists an I such that both εI(z) ≤ τm and εI ≥ bτm or there exists an
I such that both εI(z) ≥ τm and εI < τm/b. It follows that

Prob{e2 > 0} ≤
∑

I∈Tj0

Prob{εI(z) ≤ τm and εI ≥ bτm}

+
∑

I∈Tj0

Prob{εI(z) ≥ τm and εI ≤ τm/b}. (4.11)
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Using (4.9) with η = τm yields

∑

I∈Tj0
Prob{εI(z) ≤ τm and εI ≥ bτm} ≤ #(Tj0)e

−cmτ2
m

≤ #(Λj0)e
−cmτ2

m

≤ aj0e−cκ2 log m

≤ τ
−1/γ
m m−cκ2

≤ Cm1/γ−cκ2
.

We can treat the second sum in (4.11) the same way and obtain the same bound as the
one for e4 below. By similar considerations, we obtain

Prob{e4 > 0} ≤
∑

I∈Tj0

Prob{εI(z) ≥ τm and εI ≤ τm/b}, (4.12)

and we use (4.10) with η = τm/b which yields Prob{e4 > 0} ≤ Cm1/γ−cκ2/b2 . We therefore
obtain (4.6) by choosing κ ≥ κ0 with cκ2

0 = b2(β + 1/γ).

We are left with the proof of Lemma 4.1. As a first step, we show that the proof can be
reduced to the particular case a = 2. To this end, we remark that the splitting of I into
its a children {J1, · · · , Ja} can be decomposed into a − 1 steps consisting of splitting an
element into a pair of elements: defining In := I \ (J1 ∪ · · · ∪ Jn) we start from I = I0
and refine iteratively In−1 into the two elements In and Jn, for n = 1, · · · , a − 1. By
orthogonality, we can write

ε2
I :=

a−2
∑

n=0

(εIn)2, (4.13)

where ε2
In

is the amount of L2(X, ρX) energy which is increased in the projection of fρ

when In+1 is refined into In and Jn. In a similar way, we can write for the observed
quantities

ε2
I(z) :=

a−2
∑

n=0

εIn(z)2, (4.14)

Now if ε2
I ≤ η2 and εI(z)2 ≥ b2η2 = 4(a−1)η2, it follows that there exist n ∈ {0, · · · , a−2}

such that (εIn)2 ≤ η2 and εIn(z)2 ≥ 4η2. Therefore,

Prob{εI ≤ η and εI(z) ≥ bη} ≤
a−2
∑

n=0

Prob{εIn ≤ η and εIn(z) ≥ 2η}, (4.15)

and similarly

Prob{εI(z) ≤ η and εI ≥ bη} ≤
a−2
∑

n=0

Prob{εIn(z) ≤ η and εIn ≥ 2η}, (4.16)

so that the estimates (4.9) and (4.10) for a > 2 follow from the same estimates established
for a = 2 in which case b = 2.
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In the case a = 2, we denote by I+ and I− the two children of I. Note that if ρJ = 0
for J = I+ or for J = I−, there is nothing to prove, since in this case we find that
εI = εI(z) = 0 with probability one. We therefore assume that ρJ > 0 for J = I+ and
I−. We first rewrite εI as follows

ε2
I =

α2
I+

ρI+

+
α2

I−

ρI−
− α2

I

ρI

= ρI+c2I+ + ρI−c
2
I− − ρIc

2
I

= ρI+c2I+ + ρI−c
2
I− − ρI((ρI+cI+ + ρI−cI−)/ρI)

2

=
ρI+ρI−

ρI

(cI+ − cI−)2,

and therefore εI = |βI | with

βI :=

√

ρI+ρI−

ρI

(cI+ − cI−). (4.17)

In a similar way we obtain εI(z) = |βI(z)| with

βI(z) :=

√

ρI+(z)ρI−(z)

ρI(z)
(cI+(z) − cI−(z)). (4.18)

Introducing the quantities aI+ =
√

ρI−
ρIρI+

and aI− =
√

ρI+

ρIρI−
and their empirical counter-

part aI+(z) and aI−(z) we can rewrite βI and βI(z) as

βI = aI+αI+ − aI−αI− (4.19)

and
βI(z) = aI+(z)αI+(z) − aI−(z)αI−(z). (4.20)

It follows that

|εI − εI(z)| ≤ |aI+αI+ − aI+(z)αI+(z)| + |aI−αI− − aI−(z)αI−(z)|. (4.21)

We next introduce the numbers δJ defined by the relation ρJ (z) = (1 + δJ)ρJ , for J =
I+, I− or I. It is easily seen that if |δJ | ≤ δ ≤ 1/4 for J = I+, I− and I, one has

aI+(z) = (1 + µ+
I )aI+ (4.22)

with |µ+
I | ≤ 3δ. This follows indeed from the basic inequalities

1 − 3δ ≤
√

(1 − δ)

(1 + δ)2
≤

√

(1 + δ)

(1 − δ)2
≤ 1 + 3δ (4.23)

which hold for 0 ≤ δ ≤ 1/4. Therefore if |δJ | ≤ δ ≤ 1/4 for J = I+, I− and I, we have

|aI+αI+ − aI+(z)αI+(z)| ≤ aI+(z)|αI+ − αI+(z)| + |αI+(aI+ − aI+(z))|
≤ 2aI+ |αI+ − αI+(z)| + 3δaI+ |αI+|.
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By similar considerations, we obtain the estimate

|aI−αI− − aI−(z)αI−(z)| ≤ 2aI−|αI− − αI−(z)| + 3δaI−|αI−|,

and therefore
|εI − εI(z)| ≤

∑

K=I+,I−

2aK |αK − αK(z)| + 3δaK |αK |. (4.24)

We first turn to (4.9), which corresponds to the case where εI ≥ 2η and εI(z) ≤ η. In
this case, we remark that we have

η2 ≤ ε2
I

4
=
ρI+ρI−

ρI

(cI+ − cI−)2

4
≤M2ρL, (4.25)

for L = I+, I− and I. Combining (4.24) and (4.25), we estimate the probability by

Prob{εI(z) ≤ η and εI ≥ 2η} ≤
∑

K=I+,I−

(

pK +
∑

J=I−,I+,I

qK,J

)

, (4.26)

with

pK := Prob{|αK − αK(z)| ≥ [8aK ]−1η given ρK ≥ η2

M2
}, (4.27)

and

qK,J := Prob{|ρJ − ρJ (z)| ≥ ρJ min{1

4
, η[12aK|αK |]−1} given ρJ ≥ η2

M2
}. (4.28)

Using Bernstein’s inequality, we can estimate pK as follows

pK ≤ 2e
− mη2

2(64a2
K

M2ρK+8aKηM/3) ≤ 2e
− mη2

2(64a2
K

M2ρK+8aK
√

ρKM2/3) ≤ 2e−cmη2

,

with c = [(128 + 16/3)M2]−1, where we have used η2 ≤ ρKM
2 in the second inequality

and the fact that a2
KρK ≤ 1 in the third inequality.

In the case where 12aK |αK | ≤ 4η, we estimate qK,J by

qK,J ≤ 2e
− mρJ

2(16+4/3) ≤ 2e−cmη2

,

with c = [(32 + 8/3)M2]−1, where we have used ρJ ≥ η2/M2.
In the opposite case 12aK |αK | ≥ 4η, we estimate qK,J by

qK,J ≤ 2e
−m

„

ρJη
12aK |αK |

«2

2

„

ρJ+
ρJη

36aK |αK |

«

≤ 2e
− mρJ η2

312a2
K

|αK |2

where in the last inequality we used 3aK |αK | ≥ η to bound the second term in the
denominator. Since |αK | ≤ MρK , we have a2

Kα
2
K ≤M2(ρI−ρI+/ρI) ≤ M2 min {ρI− , ρI+}

so that ρJ ≥ a2
Kα

2
K/M

2. Therefore, we obtain

qK,J ≤ e−cmη2

(4.29)
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with c = [312M2]−1.
Using these estimates for pK and qK,J back in (4.26), we obtain (4.9).
We next turn to (4.10), which corresponds to the opposite case where εI ≤ η and

εI(z) ≥ 2η. In this case, we remark that we have

η2 ≤ ε2
I(z)

4
=
ρI+(z)ρI−(z)

ρI(z)

(cI+(z) − cI−(z))2

4
≤M2ρL(z), (4.30)

for L = I+, I− and I. In this case, we do not have η2 ≤ M2ρL, but we shall use the fact
that η2 ≤ 2M2ρL with high probability, by writing

Prob{εI ≤ η and εI(z) ≥ 2η} ≤
∑

K=I+,I1

(

pK + p̃K +
∑

J=I−,I+,I

(qK,J + p̃J)
)

, (4.31)

where now

pK := Prob{|αK − αK(z)| ≥ [8aK ]−1η; given ρK ≥ η2

2M2
}, (4.32)

and

qK,J := Prob{|ρJ − ρJ (z)| ≥ ρJ min{1

4
, η[12aK|αK |]−1} given ρJ ≥ η2

2M2
} (4.33)

and the additional probability is given by

p̃J := Prob{η2 ≤M2ρJ(z) given η2 ≥ 2M2ρJ}. (4.34)

Clearly, pK and qK,J are estimated as in the proof of (4.9). The additional probability is
estimated by

p̃J ≤ Prob{η2 ≥M2ρJ and |ρJ − ρJ (z)| ≥ (η/M)2}

≤ 2e
− mη4

2(ρJ M4+M2η/3)

≤ 2e
− mη4

2(η2M2+M2η2/3)

≤ 2e−cmη2

,

with c = (8M2/3)−1. Using these estimates in (4.31), we obtain (4.10), which concludes
the proof of the lemma. 2

5 Universal consistency of the estimator

In this last section, we discuss the consistency of our estimator when no smoothness
assumption is made on the regression function fρ ∈ L2(X, ρX). Of course it is still
assumed that |y| ≤ M almost surely, so that |fρ| ≤M .

We are therefore interested in checking the convergence property

lim
m→+∞

E(‖fρ − f
z,m‖2) = 0, (5.1)
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which in turns implies the convergence in probability: for all ε > 0,

lim
m→+∞

Prob{‖fρ − f
z,m‖ > ε} = 0. (5.2)

For this purpose, we use the same estimation of the error by e1 + e2 + e3 + e4 as in the
proof of Theorem 2.5.

We first remark that the proof of the estimate

E(e22) + E(e42) ≤ Cm−β , (5.3)

remains unchanged under no smoothness assumption made on fρ.
Concerning the approximation term e1, we have seen that

e1 ≤ ‖fρ − PΛ(fρ,bτm)fρ‖ + ‖fρ − PΛj0
fρ‖. (5.4)

Under no smoothness assumptions, the convergence to 0 of these two terms still occurs
when j0 → +∞ and τm → 0, that is as m→ +∞. This requires however that the union of
the spaces (SΛj

)j≥0 is dense in L2(X, ρX). This is ensured by imposing natural restrictions
on the splitting procedure generating the partitions which should be such that

lim
j→+∞

sup
I∈Λj

|I| = 0, (5.5)

where |I| is the Lebesgue measure of I. This is obviously true for dyadic partitions, and
more generally when the splitting rule is such that

sup
J∈C(I)

|J | ≤ ν|I|, (5.6)

with ν < 1 independent of I ∈ T . Under this restriction, classical results of measure
theory indicates that PΛj

f converges to f in L2(X, ρX) as j → +∞ for all f ∈ L2(ρX).
We are therefore ensured that ‖fρ − PΛj0

fρ‖ tends to 0 as m → +∞. For the first
term ‖fρ −PΛ(fρ,bτm)fρ‖, we remark that the convergence of PΛj

f to f also implies that f
can be written as the sum of an L2(X, ρX)-orthogonal series

f = p0χX +
∑

I∈T
ψI , with ψI := sup

J∈C(I)

pJχJ − pIχI , (5.7)

It follows that for η > 0

‖f − PΛ(f,η)f‖2 =
∑

I /∈T (f,η)

εI(f)2 ≤
∑

εI(f)≤η

εI2. (5.8)

Since by Parseval inequality,

∑

I∈T
εI(f)2 = ‖f‖2 − ‖p0χX‖2 < +∞, (5.9)

it follows that ‖f − PΛ(f,η)fρ‖ tends to 0 as η → 0. Therefore ‖fρ − PΛ(fρ,bτm)fρ‖ tends to
0 as m→ +∞.
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It remains to study the variance term e3 for which we have established

E(e32) ≤ C
N logN

m
, (5.10)

with
N = #(Λ(τm, z) ∧ Λ(τm/b)) ≤ #(Λ(τm/b). (5.11)

Note that since (εI)I∈T is a square summable sequence according to (5.9), we have

#{I ∈ T ; εI > η} ≤ Cη−2ϕ(η), (5.12)

where ϕ(η) → 0 as η → 0. Therefore if #(Λ(τm/b) was controlled by #{I ∈ T ; εI >
τm/b}, we would derive

E(e32) ≤ C
τ−2
m log(τ−2

m )

m
ϕ(τm) ≤ Cϕ(τm), (5.13)

and therefore E(e32) would tend to 0 which terminates the proof of the consistency
of the estimator. However, #(Λ(τm/b) can be significantly larger due to the process of
completing the set of thresholded coefficients into a proper tree. We still have the estimate

#(Λ(τm/b) ≤ j0#{I ∈ T ; εI > τm/b} ≤ C logmτ−2
m ϕ(τm), (5.14)

where C depends on a and γ. It follows that E(e32) will always go to 0 is the threshold
τm is modified to

τm :=
logm√
m
, (5.15)

which amounts to an additional
√

logm factor. It is easily checked that this modification
does not affect the other estimates for e1, e2 and e4. However it induces an additional√

logm factor in the rate of convergence expressed by Theorem 2.5.
An alternate way of ensuring the convergence to zero of E(e32) is by imposing that

γ > 1/2, since we can then write

#(Λ(τm/b) ≤ #(Λj0 = aj0 ≤ Cτ−1/γ
m , (5.16)

with 1/γ > 2, which readily implies that N logN/m tends to 0. However this is a
stronger restriction since the optimal convergence rate of the algorithm is maintained
only for regression functions which are at least in the uniform approximation space A1/2.
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