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1. Introduction

In evolutionary biology, it is common practice to use leaf-labeled (or phylogenetic)
trees to represent the evolution of species, populations, organisms, and the like [24].
Technically speaking, such a tree is a simple, connected graph with no cycles, and it is
leaf-labeled in case each of its leaves (i.e. vertices of degree 1) is labeled by precisely one
element from some set. The set of labels corresponds to the set of species, populations or
organisms under consideration. A simple example of such a tree is presented in Figure 1
(a); we refer reader to [24] for the basic terminology and results on trees and leaf-labeled
trees that we shall use in this paper.

Recently it has become apparent that it can also be useful to employ a slightly
more general type of tree when trying to understand, for example, gene evolution. In
particular, due to processes such as gene (or genome) duplication or lateral gene transfer,
trees can often arise in which more than one leaf is labeled by the same element of the
label set. We call such trees leaf-multi-labeled trees (these are also known as MUL-trees
[15]). An example of such a tree, and how it may arise, is presented in Figure 1 (b) and
(c). Note that in case each leaf if labeled only once, a leaf-multi-labeled tree is just a
leaf-labeled tree. In addition to arising in the study of gene versus species evolution (e.g.
[5, 23]), leaf-multi-labeled trees have been used to construct phylogenetic networks (e.g.
[13, 15, 18]), and they naturally arise in biogeography (e.g.[8]).

As with leaf-labeled trees, for the purposes of applications it is important to develop a
mathematical understanding of leaf-multi-labeled trees. Although at first sight leaf-multi-
labeled trees do not seem very different from leaf-labeled trees, the theory of leaf-multi-
labeled trees appears to be quite rich in its own right, and several results on theoretical
and algorithmic properties of such trees have recently appeared (cf. e.g. [5, 8, 9, 14]).
In this paper we will investigate generating functions for such trees, and show how these
can be employed to develop recursions for counting them. Note that counting leaf-multi-
labeled trees can, for example, be useful for computing bounds on the time required for
search algorithms that are commonly used to construct such trees [24].

Counting trees has a rich history. Kirchoff’s Laws led to a natural interest in trees
and to counting them [17]. At the dawn of graph theory, graphs were considered as
1-dimensional simplicial complexes and of particular interest were the connected ones
without cycles, i.e. trees. Various formulae have been developed for counting leaf-
labeled trees including the monograph [20]. Cayley [2] formulated that the number of
labeled trees on n vertices is nn−2. For example, the well-known formula [3, 6, 7] for
the number of binary leaf-labeled trees dates1 back to Schröder’s Fourth Problem [22].
Similar formulae have also been derived for the number of rooted binary leaf-labeled trees
[10] (a rooted tree is a tree with precisely one distinguished vertex called the root).

Concerning generating functions and trees, Harding [10] described ordinary generating
functions for rooted, binary tree-shapes (i.e. isomorphism classes of unlabeled trees) with
or without a specified number of internal vertices. Counting rooted unlabeled trees with
the Pólya–Redfield method can be found, e.g., in [19]. Otter’s remarkable contribution
was counting unrooted unlabeled trees using counting results of rooted unlabeled trees
[21]. The functional equation for the ordinary generating function of the number of

1A binary tree is one in which all non-leaf vertices have degree 3.
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Figure 1: (a) A leaf-labeled “species tree” labeled by the set of species {1, 2, 3, 4, 5}. (b)
A “gene tree” (in bold) representing the evolution of a gene, depicted within the species
tree (in dashed) from (a) — we see two gene duplication events, and a gene loss (indicated
with a cross). (c) The leaf-multi-labeled tree corresponding to the gene tree in (b), for
which the label set is {1, 2, 3, 4, 5}.

rooted unlabeled trees was already known to Cayley (see [21]). Using methods due to
Otter and Pólya (described in e.g. [12]), Dobson [4] also gave the generating function for
unrooted, binary tree-shapes in terms of Harding’s function. In addition, in [24, p.22], a
formula involving the exponential generating function for rooted binary trees is given.

Here we shall derive formulae for ordinary generating functions for leaf-multi-labeled
trees, and describe how they may be used to develop recursions for counting such trees.
As we will only consider ordinary generating functions we shall drop the term “ordinary”
from now on; the basics on generating functions that we shall use may be found in, for
example, [1].

We now describe the contents of this paper. In Section 2 we give a formula (The-
orem 1) involving the generating function for the number of rooted binary leaf-multi-
labeled trees, and use this to develop a recursion for counting such trees (see Equa-
tion (2)). Note that a tree-shape can be considered as a leaf-multi-labeled tree in which
only one label is used to label all leaves, and so Theorem 1 is a direct generalization of
Harding’s formula for the tree-shape generating function [10] (see also Equation (1)).

In Section 3, we will present a theorem (Theorem 2), which will allow us to relate
generating functions of rooted binary leaf-multi-labeled trees with unrooted versions of
these trees. This is a generalization of a theorem due to Otter [21] for leaf-labeled trees.
Curiously, considering leaf-multi-labeled trees as opposed to leaf-labeled trees allows us
to find a simpler proof of Otter’s theorem. We then use Theorem 2 in Section 4 to
derive a formula for the generating function of unrooted binary leaf-multi-labeled trees
(Theorem 5) and some associated recursions (Equation (6)). We conclude by consider-
ing non-binary trees, giving formulae for associated generating functions in the rooted
(Corollary 1) and unrooted case (Corollary 2). Note that in this section we consider trees
where only the root may have degree two, as these are the relevant trees for biological
applications. Similar formulae can be developed if we allow internal non-root vertices to
have degree two. The interested reader should consult [16].
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In the rest of this paper, the label set for all of the trees that we shall consider will
be [k] = {1, 2, . . . , k}, k ≥ 1. Semi-labeled trees are trees where a subset of the leaves
have been labeled, and we will allow the labels to repeat. Note that semi-labeled trees
may have internal vertices of degree two (and in Theorem 2 this is allowed). Clearly,
leaf-multi-labeled trees and unlabeled trees are a subset of semi-labeled trees, where the
subset that is labeled is the set of leaves and the empty set, respectively. The notation
Exp(x) will be used for ex.

2. Rooted binary trees

We begin by considering the generating function for rooted, binary leaf-multi-labeled
trees. Note that for technical reasons, we shall consider a single vertex as being a binary,
rooted tree. Thus, other than the single vertex, a tree is a rooted (binary) tree if the
root vertex has degree at least (equal to) 2, and all the non-root, non-leaf vertices have
degree at least (equal to) 3.

Let tn denote the number of unlabeled rooted binary trees with n leaves (or, equiv-
alently, the number of binary rooted tree-shapes [24]). Note that, as mentioned in the
introduction, this corresponds to the number of binary rooted leaf-multi-labeled trees
with n leaves on label set [1].

Harding observed [10] (see also Wedderburn [25]) that the generating function for the
sequence {tn}∞n=1, viz.

T (z) =

∞∑
n=1

tnz
n,

satisfies the equation

T (z) = z +
1

2
T 2(z) +

1

2
T (z2). (1)

A simple justification of this fact is as follows: Clearly, t0 = 0 and t1 = 1. For n ≥ 2,
as the root has degree 2, there are two subtrees below the root and, as the order of
the subtrees does not matter, T 2(z) counts all those trees where the two subtrees are
not isomorphic twice and those where the subtrees are isomorphic once, whereas T (z2)
counts those trees where the two subtrees are isomorphic.

The same line of reasoning can be used to give a formula for the generating function

R(x1, . . . , xk) =
∑

n1,...,nk

rn1,...,nk
xn1
1 · · · , x

nk

k ,

where rn1,...,nk
denotes the number of rooted binary leaf-multi-labeled trees on the set

[k] with
∑k

i=1 ni leaves in which label j ∈ [k], is used on precisely nj leaves (nj = 0 is
allowed and r0,...,0 = 0). In particular, we have

Theorem 1.

R(x1, . . . , xk) = (x1 + · · ·+ xk) +
1

2
R2(x1, . . . , xk) +

1

2
R(x21, . . . , x

2
k).
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Although we shall not go into a similar level of detail in the following sections, for
the purposes of illustration, we note that this theorem can be used in a straight-forward
fashion to obtain a recursion for calculating the numbers rn1,...,nk

as follows. Put

hn1,...,nk
=

n1∑
m1=0

n2∑
m2=0

· · ·
ni∑

mi=0

· · ·
nk∑

mk=0

rm1,...,mk
rn1−m1,...,nk−mk

.

Then

rn1,...,nk
=



0 if
k∑

i=1

ni = 0,

1 if
k∑

i=1

ni = 1,

1
2

(
rn1/2,...,nk/2 + hn1,...,nk

)
if all ni are even

and
k∑

j=1

ni ≥ 2,

1
2hn1,...,nk

else.

(2)

Two special cases of this recursion are worth pointing out. Let rn;k denote the number
of rooted binary leaf-multi-labeled trees with n leaves on the set [k], and let Rk(z) be
the associated generating function. Then by Theorem 1 we have

Rk(z) = kz +
1

2
R2

k(z) +
1

2
Rk(z2),

(just put x1 = . . . = xk = z) which, in case of k = 1 yields (1), as expected. Note that
this formula also yields the recursion

rn;k =



0 if n = 0,
k if n = 1,

1
2

n−1∑
j=1

rj;krn−j;k if n > 1 odd,

1
2

(
rn/2;k +

n−1∑
j=1

rj;krn−j;k

)
else.

(3)

As an illustration we present some values of rn;k for n ≤ 10 and k ≤ 5 in Table 1.
These values were obtained using the program available at the website http://www.

math.sc.edu/~czabarka/programfiles/treecode.html

Second, we consider the case where we insist on using every label in [k] (i.e. the
numbers rn1,...,nk

where each ni is positive). Then, denoting by Vk(z) the generating
function for the binary rooted leaf-multi-labeled trees where the labels come from the set
[k] and each label is used, the inclusion-exclusion principle yields

Vk(z) =

∞∑
n=0

vn;kz
n =

k−1∑
j=0

(−1)j
(
k

j

)
Rk−j(z).

Thus, we obtain the equation

vn;k =

k−1∑
j=0

(−1)j
(
k

j

)
rn;k−j .
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n\k 1 2 3 4 5

1 1 2 3 4 5
2 1 3 6 10 15
3 1 6 18 40 75
4 2 18 75 215 495
5 3 54 333 1260 3600
6 6 183 1620 8010 28275
7 11 636 8202 53240 232500
8 23 2316 43188 366680 1979385
9 46 8610 232947 2590420 17287050
10 98 32763 1282824 18674660 154041450

Table 1: The first few values of rn;k, the number of rooted binary leaf-multi-labeled trees
with n leaves on the label set [k], obtained using recursion (3).

Again, these numbers can be computed using the program mentioned above.

3. A generalization of Otter’s Theorem

In this section we will prove a generalization of Otter’s theorem [21, p.589], which
is Theorem 2 for unlabeled trees. This will enable us to derive formulae for generating
functions associated to non-binary, rooted leaf-multi-labeled trees. We first need to define
some additional concepts.

Let T = (V,E) be any (rooted or unrooted) semi-labeled tree. We call the function φ :
V → V an automorphism of T , if it is a label- and root-preserving graph automorphism,
i.e. xy ∈ E if and only if φ(x)φ(y) ∈ E, x and φ(x) have the same label (or no label),
and if there is a root r, then φ(r) = r. We say that x, y ∈ V are equivalent if there is
an automorphism φ of T such that φ(x) = y; xy, uv ∈ E are equivalent if there is an
automorphism φ of T such that {φ(x), φ(y)} = {u, v}, and xy ∈ E is a symmetry-edge if
there is an automorphism φ of T such that φ(x) = y and φ(y) = x.

It is clear that there is at most one symmetry-edge for any tree, as removing a
symmetry edge results in a set of two isomorphic trees. It is also obvious that the
automorphisms of T form a group, thus the above defined equivalences are equivalence
relations on the vertices and on the edges of T . We call the number of equivalence
classes the number of non-isomorphic points and non-isomorphic edges, respectively. The
number of non-isomorphic points of T is denoted by pT , the number of non-isomorphic
edges by qT , and the number of symmetry edges of T by sT . By the above remarks,
sT ∈ {0, 1}.

For an illustration of the idea of equivalence, pT , qT and sT , see the trees depicted
on Figure 2.

The following concept will be key in our arguments for relating rooted and unrooted
trees. Let T be a tree. A marking of T is a choice of one its vertices; the chosen vertex
will be called the marked vertex. In case T is a rooted tree, we will always assume that
the marked vertex is the root.

Now, let T be an (unrooted) binary tree and mark any one of its vertices. Clearly,
the number of non-isomorphic markings is pT . Indeed, marking two different vertices
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T

2 2

1
1

1
1

T ′

2 2

3

3

Figure 2: A semi-labeled tree T on label set {1, 2} and a semi-labeled tree T ′ on label set
{1, 2, 3}. The shapes, coloring and line types illustrate equivalence: vertices and edges
that are depicted by the same kind of shape or line are equivalent. The jagged edge
connecting the two vertices labeled by 2 is a symmetry edge. Note that pT = qT = 4,
sT = sT ′ = 1 and pT ′ = qT ′ = 3. The parents in T are the white circular nodes connected
to the labeled leaves, they form the sets A = B in the proof of Theorem 2. Removing
the leaves attached to B and relabeling B as in the proof results in the tree T ′.
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gives rise to different marked trees precisely when the marked vertices belong to different
equivalence classes. Note that by subdividing an edge of T into two edges, and marking
the resulting vertex of degree 2, we obtain a rooted binary tree. In particular, qT cor-
responds to the number of ways to root the tree T in this way at one of its edges, and
sT corresponds to the number of ways to root the tree T at one of its edges so that the
subtrees resulting from removing this root are isomorphic.

With these concepts in hand, we can now prove that Otter’s formula (4) for unlabeled
trees also holds for semi-labeled trees. It is worthwhile to note that Otter’s formula also
follows from Theorem 3 at the end of this section.

Theorem 2. For any semi-labeled tree T we have

pT − qT + sT = 1. (4)

Proof. We use induction on the number of vertices n of T .
If n = 1, then pT = 1 and qT = sT = 0. If n = 2, then we have two cases. If both the

vertices are unlabeled or they have the same label, then pT = qT = sT = 1. If only one
of the vertices are labeled or they have different labels then pT = 2, qT = 1 and sT = 0.
Thus, the theorem is true for n = 1, 2.

Let n ≥ 3 and assume the theorem is true for any semi-labeled tree on less than n
vertices. We call a non-leaf vertex a parent if at most one of its neighbors are non-leaves.

Note that for any tree on at least 3 vertices the set of parents is nonempty. Indeed,
the longest path of the tree has at least 3 vertices; take a vertex that is adjacent to a
leaf of a longest path; it is not a leaf, and if it has any neighbors not on the path, that
neighbor must be a leaf, otherwise the path could be extended. Therefore the vertex we
chose must be a parent.

Also note that, if φ is an automorphism of the tree, then φ must preserve the degree,
the parent property, and the number of leaves that a vertex is adjacent to. Moreover, for
any vertex x in the tree, the two multi-sets of the labels of the leaves (where each label
appears with the same multiplicity as it is used in the tree) adjacent to x and φ(x) must
be the same. In addition, leaves adjacent to x or φ(x) are equivalent precisely when they
have the same label (or lack-of-label), and leaf-edges adjacent to x or φ(x) are equivalent
precisely when their leaf-endpoints have the same label (or no label).

Let T be a tree on n vertices, and without loss of generality, assume the label set of
T is [k]. Let A be the set of parents of T . By our above considerations, the set A is
nonempty. Fix x ∈ A and let B be the set of vertices of T that are equivalent to x. Note
that x ∈ B ⊆ A. Moreover, if φ is an automorphism of T , then φ maps B onto B, and if,
for some y ∈ B, we have φ(y) = z, then φ is a label-preserving bijection from the leaves
adjacent to y to the leaves adjacent to z.

Now, define a semi-labeled tree T ′ as follows: Erase all leaves that are adjacent to
vertices of B and label all vertices of B by k+ 1 (a label that was not used before). Note
if φ is an automorphism of T , then φ restricts to an automorphism φ′ of T ′. Moreover,
we can extend φ′ to a label-preserving automorphism of T by taking any vertex y ∈ B
and defining a label-preserving bijection from the leaves adjacent to y to the leaves of
φ(y). (An example for this is provided in Figure 2.)

Since T ′ has fewer vertices than T , it follows by the induction hypothesis that pT ′ −
qT ′+sT ′ = 1. Moreover, in view of our observations above it follows that (i) pT = pT ′+C,
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and qT = qT ′ +C, where C is the number of different type of leaves adjacent to elements
of B (the type of a leaf is its label if it has one, and “unlabeled” otherwise), and (ii)
sT = sT ′ , and if an edge in T is a symmetry edge, then the same edge is an symmetry
edge in T ′. Hence pT − qT + sT = pT ′ − qT ′ + sT ′ = 1, which completes the proof of the
theorem. �

Note that since unlabeled trees are a subset of semi-labeled trees, Otter’s theorem fol-
lows from this result. Also note that using a labeling actually makes the proof somewhat
easier than the one originally presented by Otter in [21].

It is also worth remarking that it is straight-forward to check that the same proof
extends in semi-labeled graphs to give an equation relating the number of dissimilarity
points and the number of dissimilarity points within dissimilar 2-connected blocks, as was
noted for unlabeled graphs in [11, pp.54-56] (although the proof presented there without
using labels is not completely correct, as shown e.g. by a caterpillar tree of diameter 3
on 5 leaves, for details see [16]).

More specifically, let G = (V,E) be a connected semi-labeled graph. A block of G is
a maximal 2-connected subgraph of G. We call two points x, y ∈ V equivalent if there is
a label-preserving graph-automorphism φ of G such that φ(x) = y. Two blocks, B1 and
B2 are equivalent if a label-preserving graph-automorphism of G maps the points of B1

on to B2. The number of nonequivalent points in G is denoted by p∗ and the number
of nonequivalent blocks is denoted by b∗. Let B1, B2, . . . Bb∗ be pairwise nonequivalent
blocks in G, and let p∗i be the number of nonequivalent points in Bi Then it can be shown
that

Theorem 3. For any connected semi-labeled graph G, we have that

p∗ − 1 =

b∗∑
i=1

(p∗i − 1) (5)

In particular, as noted in [11], for a tree T we have p∗ = pT , the blocks of a tree are the
edges with their endpoints, and thus b∗ = qT , and for Bi, we have that pi = 2 if Bi is
not the symmetry edge, pi = 1 otherwise. Thus, in this specific case, (5) implies (4).

4. Unrooted binary trees

In this section, we will present formulae involving generating functions for unrooted
binary trees.

As indicated in the previous section, to count unrooted binary trees it will be helpful
to first count marked trees. Let mn1,...,nk

be the number of marked, binary leaf-multi-
labeled trees where label j is used nj times, and letM(x1, . . . , xk) =

∑
mn1,...,nk

xn1
1 · · ·x

nk

k

to be the corresponding generating function.

Theorem 4.

M(x1, . . . , xk) = (x1 + · · ·+ xk)
(

1 +R(x1, . . . , xk)
)

+
1

6
R3(x1, . . . , xk)

+
1

2
R(x1, . . . , xk)R(x21, . . . , x

2
k) +

1

3
R(x31, . . . , x

3
k).
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Proof. Let T be a marked, binary leaf-multi-labeled tree. If the marked vertex x is a
leaf of T marked with label j, then either T is a vertex or, by removing x and rooting
the resulting tree at its neighbor, we can obtain a rooted binary leaf-multi-labeled tree
with the label j used one less time.

It follows that the marked binary leaf-multi-labeled trees where the mark is on a
leaf are counted by the generating function (x1 + · · ·xk)(1 + R(x1, . . . , xk)). So it only
remains to describe the generating function for marked trees where an internal vertex
(i.e. vertex of degree 3) is marked.

This is determined by the collection of leaf-multi-labeled rooted binary forests (i.e.
disjoint unions of rooted binary trees) consisting of precisely three rooted binary leaf-
multi-labeled trees, since we can obtain such a forest when we remove the marked vertex
from T and root the resulting three trees at the neighbor of the marked vertex. Note
that, since the neighbor was either a leaf, or it had degree 3, the root so obtained is
either a vertex or it has degree 2, as required.

Now, consider the terms 1
6R

3(x1 . . . , xk), 1
2R(x1, . . . , xk)R(x21, . . . , x

2
k) and 1

3R(x31, . . . , x
3
k).

If all three trees in the forest are non-isomorphic, then the forest is counted by 1
6 · 6 = 1

times by the first term, and is not counted by the rest. If two of the trees in the forest
are isomorphic and the third one is not, then the first term counts this forest 1

6 · 3 = 1
2

times, the second 1
2 times and the third term does not count it. And, if all three trees

are isomorphic, then the forest is counted 1
6 + 1

2 + 1
3 = 1 times by the sum of these three

terms. This completes the proof of the theorem. �
Now, denoting by un1,...,nk

the number of unrooted leaf-multi-labeled binary trees
where the label j is used nj times, and putting U(x1, . . . , xk) =

∑
un1,...,nk

xn1
1 · · ·x

nk

k ,
we can use Theorem 2 to obtain the following:

Theorem 5.

U(x1, . . . , xk) = M(x1, . . . , xk) + (x1 + · · ·+ xk)−R(x1, . . . , xk)

+R(x21, . . . , x
2
k)

=
(
R(x1, . . . , xk) + 2

)(
x1 + · · ·+ xk − 1 +

1

2
R(x21, . . . , x

2
k)

)
+2 +

1

3
R(x31, . . . , x

3
k) +

1

6
R3(x1 . . . , xk).

Proof. Fix n1 . . . , nk and sum equation (4) over all leaf-multi-labeled binary trees T
where for all j ∈ [k] the label j is used precisely nj times. If we start from a non-singleton
tree, pT is the number of marked trees that are isomorphic to T , qT is the number of
rooted binary trees that are isomorphic to T after suppressing the root, and sT is the
number of rooted binary trees isomorphic to T , where the two rooted subtrees obtained
by removing the root and rooting the remaining trees at the neighbor of the root are
isomorphic to one another. So we obtain

un1,...,nk
=


1 if

∑
nj = 1,

mn1,...,nk
− rn1,...,nk

+ rn1/2,...,nk/2 if 2|nj for all j ∈ [k],
mn1,...,nk

− rn1,...,nk
otherwise.

We obtain the theorem by multiplying both sides with xn1
1 · · ·x

nk

k and summing over all
values of n1, . . . , nk. �
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We note that, letting un;k be the number of unrooted leaf-multi-labeled binary trees
using label set [k] that have n leaves, and putting

h∗n;k = krn−1;k − rn;k +
1

6

n−2∑
i=1

n−i−1∑
j=1

n−i−j∑
`=1

ri;krj;kr`;k +
1

2

∑
(i,j)

2i+j=n

ri;krj;k,

with rn;k as defined in Section 2, we can use the last theorem to obtain the following
recursion for computing un;k.

un;k :=



0 if n = 0,
k if n = 1,
h∗n;k + 1

3rn/3;k + rn/2;k if n = 6`, ` ∈ Z+,
h∗n;k if n = 6`± 1, ` ∈ N,
h∗n;k + rn/2;k if n = 6`± 2 ≥ 2, ` ∈ Z,

h∗n;k + 1
3rn/3;k if n = 6`+ 3 ≥ 2, ` ∈ Z.

(6)

5. Non-binary trees

We have seen how to compute generating functions and recursions for counting rooted
and unrooted binary leaf-multi-labeled trees. In this last section, we will consider non-
binary trees.

Let R denote the set of (isomorphism classes) of leaf-multi-labeled rooted trees, which
include the single vertex tree and the trees where the degree of every non-root, non-leaf
vertex is at least 3, and the root has degree at least 2. Note that for a binary tree with
n ≥ 2 leaves, the number of internal vertices can be given as a function of n (n − 1 if
rooted and n−2 if unrooted), but for non-binary trees this is not the case. In particular,
an element of R with n ≥ 2 leaves can have any number of internal vertices between 1
and n− 1. Thus it is useful to keep track of the number of internal, unlabeled vertices.

For this reason, we define au,n1,...,nk
to be the number of trees in R with u unlabeled

nodes and nj nodes with label j, and A(z;x1, . . . , xk) be the corresponding ordinary
generating function.

We now give a Cayley-type equality for A; the following notation will be helpful. For
a leaf-multi-labeled T ∈ R, we denote by `j(T ) the number of vertices that have label j,
by un(T ) the number of unlabeled vertices, and put

term(T ) = zun(T )
k∏

j=1

x
`j(T )
j .

Theorem 6.

A(z;x1, . . . , xk) =
(x1 + · · ·+ xk − z) + z · Exp

(∑∞
n=1

1
nA(zn;xn1 , . . . , x

n
k )
)

z + 1

=
( ∞∑

j=0

(−1)jzj
)(

(x1 + · · ·+ xk − z) + z · Exp
( ∞∑

n=1

1

n
A(zn;xn1 , . . . , x

n
k )
))

.
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Proof. There is precisely one tree in R that is a single vertex and is labeled by j. Thus,
A(z;x1, . . . , xk)− (x1 + · · ·+ xk) counts the trees in R with more than one vertex (and
thus the root being unlabeled). For brevity, we write

H1 =
A(z;x1, . . . , xk)− (x1 + · · ·+ xk)

z
,

H2 = A(z;x1, . . . , xk) +H1

=
(1 + z)A(z;x1, . . . , xk)− (x1 + · · ·+ xk)

z
, and

H3 = H2 + 1 =
(1 + z)A(z;x1, . . . , xk)− (x1 + · · ·+ xk − z)

z
.

In particular, H1 counts the rooted finite forests that are not just a single tree (i.e.
disjoint unions of at least two elements in R), since it counts the objects obtained by
removing the unlabeled root of a leaf-labeled tree and rooting each tree of the resulting
forest at the neighbor of the old root. Since the neighbors of the old root are either leaves
or vertices of degree at least 3, the roots of this forest are either labeled vertices of a
singleton or unlabeled vertices of degree at least 2. Thus, all of the trees in the resulting
rooted forest are contained in R.

If we take a tree in R that is not a vertex, its root has degree at least 2. Thus the
trees in R having at least two vertices are in one-to-one correspondence with the rooted
forests that have at least two components. Thus H1 counts the rooted finite forests that
have at least two components, and A(x1, . . . , xk) counts the rooted finite forests with
precisely one component. Thus, H2 counts all rooted finite nonempty forests, and H3

counts all rooted finite forests of trees, including the empty forest.
Any rooted forest (including the empty one) is determined by the number of copies of

any tree in R that appears within it. Therefore H2 is an infinite sum where each term is
of the following form: Let D be a (possibly empty) finite subset of R, for each T ∈ D let
mT be a positive integer. Then the product

∏
T∈D term(T )mT is the term corresponding

to the forest where each T ∈ D appears precisely mT times. Moreover, H3 is the sum of
all terms of this type. Therefore

H3 =

( ∏
T∈R

( ∞∑
j=0

term(T )j
))

=

( ∏
T∈R

(
1− term(T )

)−1)

=
( ∏

(u;n1,...,nk)

(1− zuxn1
1 · · ·x

nk

k )−au;n1,...,nk

)
.

The second line follows from collecting the terms corresponding to the trees that have
the same form for term(T ) and the definition of the numbers au;n1,...,nk

. This implies
that

log(H3) = −
∑

(u;n1,...,nk)

an1,...,nk
log(1− zuxn1

1 · · ·x
nk

k )

=
∑

(u;n1,...,nk)

au;n1,...,nk

∞∑
n=1

(zuxn1
1 · x

nk

k )n

n

12



=

∞∑
n=1

1

n

∑
(u;n1,...,nk)

an1,...,nk
((zn)u(xn1 )n1 · (xnk )nk)

=

∞∑
n=1

1

n
A(zn;xn1 , . . . , x

n
k ),

from which the statement in the theorem follows. �
As an immediate corollary, we can now give a formula involving the generating func-

tion for the number of trees inR where the label j is used precisely nj times: Let gn1,...,nk

be the number of such trees in R, put

G(x1, . . . , xk) =
∑

(n1,...,nk)

gn1,...,nk

k∏
j=1

x
nj

j ,

and let z = 1 in the statement of Theorem 6. Then

Corollary 1.

G(x1, . . . , xk) =
1

2

(
(x1 + · · ·+ xk − 1) + Exp

( ∞∑
n=1

1

n
G(xn1 , . . . , x

n
k )
))

.

We illustrate the use of this formula by deriving a recursion for the number gn;k of
trees in R on n leaves using [k] as label set. Clearly Gk(x) =

∑
n gn;kx

n = G(x, . . . , x).
Put G∗k(x) =

∑
n≥1

1
nGk(xn) =

∑
n≥0 g

∗
n;kx

n. Then g∗0;k = g0;k = 0, and for n ≥ 1 we
have

g∗n;k =
1

n

∑
d:d|n

dgd;k = gn;k +
1

n

∑
d:d|n
d<n

dgd;k. (7)

Therefore g∗1;k = g1;k. From Corollary 1 it follows that

Gk(x) =
1

2

(
kx+

∑
m≥1

(G∗k(x))m

m!

)
.

In particular, we get g1;k = 1
2 (k + g1;k) (i.e. g1;k = k, as expected since g1;k counts the

labeled single vertex trees!). Moreover, for n ≥ 2 we get

2gn;k =

n∑
m=1

(
1

m!

∑
(n1,...,nm):ni≥1
n1+···+nm=n

m∏
j=1

g∗nj ;k

)

= g∗n;k +

n∑
m=2

(
1

m!

∑
(n1,...,nm):ni≥1
n1+···+nm=n

m∏
j=1

g∗nj ;k

)
,

from which, using (7), we can obtain (for n ≥ 2) that

gn;k =
1

n

∑
d:d|n
d<n

dgd;k +

n∑
m=2

(
1

m!

∑
(n1,...,nm):ni≥1
n1+···+nm=n

m∏
j=1

(
1

nj

∑
d:d|nj

dgd;k

))
. (8)
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Note that rooted non-binary tree shapes (i.e. unlabeled rooted trees where internal non-
root vertices have degree at least 3 and the root does not have degree 1) are in one-to-one
correspondence with the rooted trees in R where only the label 1 is used. t Thus, these
shapes are counted by (8) using the substitution k = 1.

Using Theorem 2, we now obtain analogous results for counting unrooted trees. Let
B denote the class of unrooted leaf-multi-labeled trees where every internal vertex has
degree at least 3. Let bu;n1,...,nk

denote the number of trees in B that have u unlabeled
vertices and in which precisely nj copies of the label j are used, and putB(z;x1, . . . , xk) =∑
bu;n1,...,nk

zuxn1
1 · · ·x

nk

k .
To give a formula for the function B in terms of A, it is helpful to slightly extend

the definition of pT given in Section 3. We denote by pT ;un the number of nonequiva-
lent, unlabeled points of a leaf-multi-labeled unrooted tree, and by pT ;j the number of

nonequivalent points of T that are labeled with j. Clearly, pT = pT ;un +
∑k

j=1 pT ;j , and

pT − qT + sT = pT ;un +

k∑
j=1

pT ;j − qT + sT = 1. (9)

Using this we obtain

Theorem 7.

B(z;x1, . . . , xk) = (1 + x1 + · · ·+ xk)A(z;x1, . . . , xk)

−1

2

(
(z + 1)A2(z;x1, . . . , xk) + (z − 1)A(z2;x21, . . . , x

2
k)
)
.

Proof. For brevity, A(·m) will be used for A(zm;xm1 , . . . , x
m
k ). By (9),

B(z;x1, . . . , xk) =
∑
T∈B

term(T ) =
∑
T∈B

term(T )(pT ;un +

k∑
j=1

pT ;j − qT + sT ).

For any unrooted leaf-multi-labeled tree T , pT ;un is the number of trees in R that are
isomorphic to T and whose root is an unlabeled vertex of T (in particular, the root has
degree at least 3). In addition, pT ;j is the number of leaf-multi-labeled trees that are
isomorphic to T and have a leaf-vertex with label j marked; qT is the number of trees in
R where the root has degree 2 and, after suppressing the root vertex, we obtain a tree
that is isomorphic to T ; and sT is the number of trees that are counted by qT for which
the two subtrees at the root are isomorphic.

Now, to obtain the terms of B(·) corresponding to
∑

T term(T )
∑

j pT ;j , first note that
the contribution of the single vertex trees marked at a (leaf-)vertex is counted by

∑
j xj .

Also, the contribution of the trees with at least 2 vertices that are marked at a leaf-vertex
is counted by A(·)

∑
j xj , since removing the marked vertex and rooting the remaining

tree at the neighbor of this marked vertex gives a tree in R. Thus
∑

T term(T )
∑

j pT ;j =
(A(·) + 1)

∑
xj .

We now consider the terms corresponding to
∑

T term(T )pT ;un. If we consider the
unlabeled marked vertex root, we get a tree in R whose root must have degree at least
3. Also, using similar arguments to those used in the proof of Theorem 1, it can be

14



checked that the trees in R with root having degree less than 3 (so 2 or 0) are counted by
z
2 (A2(·) +A(·2)) +

∑
j xj , therefore

∑
T term(T )pT ;un = A(·)− z

2 (A2(·) +A(·2))−
∑

j xj .

So
∑

T∈B term(T )(pT ;un +
∑

j pT ;j) = (1 +
∑

j xj)A(·)− z
2 (A2(·) +A(·2)).

To complete the proof, note that
∑

T∈B term(T )(qT − sT ) counts those rooted leaf-
multi-labeled trees (without counting their roots) where the root has degree 2 and the two
rooted subtrees obtained when removing the original root are non-isomorphic. Again,
using arguments similar to the ones used in Theorem 1 we obtain

∑
T∈B term(T )(qT −

sT ) = 1
2 (A2(·)−A(·2)), as required. �

We now use this result to give a formula for the generating function for the unrooted
leaf-multi-labeled trees without having to keep track of the number of unlabeled vertices:
Let sn1,...,nk

denote the unrooted leaf-multi-labeled trees where no vertex has degree 2,
and exactly nj copies of the label j used, and put S(x1, . . . , xk) =

∑
sn1,...,nk

xn1
1 · · ·x

nk

k .
Then setting z = 1 in the statement of Theorem 7 we obtain

Corollary 2.

S(x1, . . . , xk) = G(x1, . . . , xk)(x1 + · · ·+ xk + 1)−G2(x1, . . . , xk).

Using this in a similar way to that described above for gn;k, we obtain a recursion
for counting the number sn;k of unrooted leaf-multi-labeled trees on n leaves using [k] as
label set:

sn;k =


0 if n = 0,
k if n = 1,

kgn−1;k + gn;k −
n−1∑
j=1

gj;kgn−j;k if n ≥ 2.

As before, sn;1 (substitute k = 1 in the above formula) counts the unrooted non-
binary tree shapes on n leaves (trees where internal vertices have degree at least 3).

We remark that similar formulae can be derived for generating functions and recur-
sions that count the number of leaf-multi-labeled trees in which a specified number of
unlabeled, degree 2 vertices are permitted (see [16]).
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